
IET Research Journals

Deep Convolutional Neural Networks as a
Method to Classify Rotating Objects based
on Monostatic Radar Cross Section

ISSN 1751-8644
doi: 0000000000
www.ietdl.org

Eric Wengrowski †,1, Matthew Purri †,1,∗, Kristin Dana 1, Andrew Huston 2

†Equally contributing co-primary authors
1Rutgers University, Department of Electrical and Computer Engineering, New Brunswick, USA
2Lockheed Martin, Radar Group, Moorestown, USA
* E-mail: matthew.purri@rutgers.edu

Abstract: Radar systems emit a time-varying signal and measure the response of a radar-reflecting surface. In the case of nar-
rowband, monostatic radar signal domain, all spatial information is projected into a Radar Cross Section (RCS) scalar. We address
the challenging problem of determining shape class using monostatic RCS estimates collected as a time series from a rotating
object tumbling with unknown motion parameters under detectability limitations and signal noise. Previous shape classification
methods have relied on image-like synthetic aperture radar (SAR) or multistatic (multiview) radar configurations with known geom-
etry. Convolutional neural networks (CNNs) have revolutionized learning tasks in the computer vision domain by leveraging images
and video rich with high-resolution 2D or 3D spatial information. We show that a feed-forward CNN can be trained to success-
fully classify object shape using only noisy monostatic RCS signals with unknown motion. We construct datasets containing over
100,000 simulated RCS signals belonging to different shape classes. We introduce deep neural network architectures that pro-
duce 2% classification error on testing data. We also introduce a refinement network that transforms simulated signals to appear
more realistic and improve training utility. The results are a pioneering step toward the recognition of more complex targets using
narrowband, monostatic radar.

1 INTRODUCTION

When illuminated with a narrowband radar signal, an object reflects
incident energy and the reflectance depends on the object’s geome-
try and material properties. The amount of energy that is reflected
directly back toward the source of illumination is a function of its
monostatic RCS (Radar Cross Section). As an object changes orien-
tation, the RCS changes as well. We wish to classify the 3D shape of
objects based only on a time series of monostatic RCS as the object
moves according to force-free rigid body motion. Our set of target
objects includes right circular cones, right circular cylinders, rect-
angular planes, spheroids, and trapezoidal prisms. The target object
set varies in size with respect to a geometric parameter for each class
(e.g. radius and height variation for cylinders). The chosen geometric
properties in the test set are selected by radar wavelength so that each
object is modeled as a Perfect Electrical Conductor (PEC). Labelled
data, i.e. RCS of known objects, are required to train and test our
supervised classifier. We create a large dataset of geometric objects
and their corresponding RCS time-series signals.

To simulate real-world conditions, the input signals for testing are
corrupted by Gaussian noise and Swerling dropout. The Swerling
Model [1] is a standard method for determining the detectability of
an object based on SNR and waveform characteristics. The instan-
taneous probability of detecting each object at at given time is
explicitly included in order to make the performance closer to real
world operation. If the Signal to Noise Ratio (SNR) at a given time
point is too small, a real-world radar system may be unable to sepa-
rate the object from noise and will therefore be unable to detect the
object and estimate its RCS.

A subset of the generated signals are used to train a feed-forward
convolutional neural network classifier. We employ an end-to-end
learning architecture, where signal features and the classifier are
jointly solved for. The inputs are a series of RCS samples over time
as the object rotates through free space. These objects belong to one
of four shape families, illustrated in Figure 2. When the rotation is
simple and follows a known path (as shown in Figure 5, top row), the

(1.1) (1.2) (1.3)

(1.4) (1.5) (1.6)

Fig. 1: Our goal is to correctly predict object shape family from a
noisy monostatic RCS signal. RCS is highly sensitive to motion, and
the rotation rates and viewing angles are unknown to the classifier.
For example, objects may be rotating very fast or very slow about
multiple axes. These signals contain added white Gaussian noise
and a Swerling detection model, where the probability of detection
is smaller for lower RCS values results in missing data points. A
convolutional neural network (CNN) is used to learn the separating
features that accurately recognize each object class overcoming the
challenge of noisy data, missing data and unknown trajectories.

problem is trivial. However, the problem becomes substantially more
difficult when the motion parameters are unknown (see Figure 5,
bottom row).

IET Research Journals, pp. 1–9
c© The Institution of Engineering and Technology 2015 1



Fig. 2: The four shape families correspond to four target classes in our classifier. Each shape class has a range of geometric parameters and
motion parameters. The parameter ranges are listed under each shape. λ is wavelength of the incident radar signal.

In this work, we successfully classify the shape family for rotating
objects with unknown roll rates, tumble rates, and unknown ini-
tial orientations. We train deep neural network classifiers that return
the probability of each signal belonging to each shape family. The
deep learning training and testing is implemented using PyTorch,
a machine learning and optimization library for the Python pro-
gramming language [2]. The SVM and Decision Tree algorithms are
implemented using the SciPy library for the Python programming
language [3]. To our knowledge, our methods are the first applica-
tion of deep learning for object shape classification using monostatic
radar signals.

2 RELATED WORK

Producing an accurate representation of a target object’s narrowband
monostatic RCS is a challenging problem. Radar specific proper-
ties such as wavelength and sampling rate, as well as object-specific
properties such as surface material, shape, and motion may dramati-
cally influence the resulting RCS time series. In this application, the
objects under investigation are geometrically simple, convex shapes
with uniform material construction. The incident energy wave is
assumed to be a simple plane wave. The environment is not modeled,
except for the addition of Gaussian noise. Due to these constraints,
the physical optics (PO) approximation is appropriate to produce
realistic returns. Open source RCS signal generation tools such as
the Matlab toolbox POFacets are readily available [4] and have been
used to approximate RCS of aircraft models [5].

A powerful new class of supervised machine learning algorithms
called convolutional neural networks (CNNs) leverage optimization
to learn complex latent features for robust classification. This fam-
ily of algorithms is called deep learning when networks contain
many convolutional layers. In 2012, a convolutional neural network
significantly outperformed all other algorithms on the object classi-
fication dataset ImageNet [6] and CNNs have become the algorithm
of choice for image recognition in computer vision [7–11].

Traditional neural networks have been used for radar classifica-
tion tasks for decades, often derived from architectures developed for
speech recognition such as the time-delay neural network [12, 13].
Early work on neural networks for processing radar signals were
applied to identifying the number and type of radar emitters in
a simulated multisource environment [14]. Pulse-train radar sig-
nal classification and source identification remains a topic of active
research [15, 16]. Another recent challenge for neural networks
in radar is the identification of radar jamming signals [17, 18].
Traditional neural networks have been applied to: SAR imagery
for ground terrain classification [19] and crop classification [20];
microwave radar for classifying pedestrians and vehicles [21];
doppler radar for identify human breathing [22]; ground penetrat-
ing radar for the classification of geological structures [23]; forward
scattering radar for identifying very small marine targets [24].

While traditional neural networks have been used widely in radar
classification tasks, modern deep learning and CNNs are beginning
to take hold in recent applications [25–29]. The success of the 2D
CNNs on standard color images has translated well into radar appli-
cations. While most deep learning networks are designed for 2D
imagery and can be directly applied to radar-based imagery, how-
ever, the RCS time series signals in our work are one-dimensional
signals. In fields such as natural language processing [30] and
medical applications [31], 1D CNNs have provided successful clas-
sification. In this work, we leverage successful deep networks for 2D
image recognition, but adapt the networks to the 1D monostatic RCS
signals.

Fig. 3: The POFacets library was used to generate RCS signals from
geometric shape models. Generalized Euler motion, additive Gaus-
sian noise, and Swerling 2 dropout are then incorporated to generate
the final signal.

Multi-static radar systems utilize a set of receivers and trans-
mitters to create multiple 1D RCS signals of a target object. In
prior work, multistatic RCS signals are classified individually using
CNNs [25, 32] and the average of multiple CNNs [33] for multi-
static contextual target signatures. The monostatic system addressed
in our work contains a single collocated receiver-transmitter pair,
compared to multistatic systems which have one or more spatially
separated receivers and transmitters. The classification problem of
monostatic RCS signals is particularly challenging since the signals
do not contain contextual information from multiple sources.

3 GENERATING RCS SIGNALS

The first step in RCS classification is generating 3D models of our
target objects. The parameters of these objects are listed in Figure 2.
128 geometric models were generated, each corresponding to one of
four shape classes in the primary experiments. For each of the 3D
models, POFacets is used to generate narrowband monostatic RCS
values. In the case of monostatic radar, we assume that the radar

IET Research Journals, pp. 1–9
2 c© The Institution of Engineering and Technology 2015



source and receiver are at the same location. The radar frequency
is kept constant. It is important to note that in the physical optics
model, RCS behavior depends only on the size of the object in wave-
lengths. Thus we can arbitrarily set the chosen frequency to 0.3GHz
while preserving the general behavior of any wavelength. Since the
3D model parameters are scaled by wavelength, this allowed for unit
shape size parameters. POFacets is used to generate narrowband
monostatic RCS responses, sensitive to object rotation parameter-
ized by θ and φ . The mapping is done by specifying an angular
sweep from 0◦ to 180◦ at high sampling intervals (0.1◦). Symme-
try about the shapes allows us to simulate to a maximum rotation of
180◦.

Fig. 4: Swerling detectability is an important parameter in our
model. As the RCS SNR decreased, so does the probability of detec-
tion. According to the above graph, SNRs of 25dB and 15dB provide
almost no dropped measurements. But for SNR = 5dB, the prob-
ability of detection drops significantly, to roughly 50%. The RCS
measurements with the lowest magnitude have a greater likelihood
of being dropped to 0. Although Swerling dropout did have a major
effect on our results, it often preserves larger RCS values in the time
series signal, and the larger RCS values are expected to play a more
substantial role in feature selection.

3.1 Generalized Euler Motion

Once an RCS map had been generated, a motion path is drawn over
the surface and the map is be interpolated. The target objects are
assigned tumble, roll, and initial rotation angle. The initial conditions
are then propagated following the physics of rigid body motion in the
presence of no external forces (free motion). A quaternion model is
used to generate the motion path parameterized by θ and φ over
the precomputed 2D RCS map. The roll and tumble parameters are
bound by the values described in Figure 2. For each shape class, the
center of mass and moment of inertia are calculated and used for the
simulation of realistic, geometry-dependent object motion.

3.2 Randomizations in Motion Parameters

It would be relatively easy to classify RCS signals from objects at
integer-valued roll, tumble, and viewing angle. To make the prob-
lem more realistic and challenging, randomizations were applied to
the values of each parameter. A random variable x with µ = 1 and
σ = 0.5 was multiplied with the viewing angle (θ and φ ), tumble
rate, and rotation rate for each signal. The random variation allows
for the construction of a database where the same 2D RCS map could
be used to generate multiple signals. The ability to scale motion
parameters with random jitter allowed the creation a nearly equal
number of signals between the four classes, even though there were

more 3D models created for plates. CNN performance is generally
improved when there are equal number of training examples in all
classes.

3.3 Update Rate, Swerling, Gaussian Noise, Gradients,
and Pyramids

A realistic radar model has a finite update rate. The number of sam-
ples as an object rotates are related to the update rate (in Hz) and
the rotation rates (in radians/second). In this study the kinematic
bounds of the objects are defined in radians/update, thus the perfor-
mance of a highly sampled signal that rotates quickly is the same as
as if it were rotating more slowly with a corresponding decrease in
radar update rate. The motion parameters are specified in radians per
update. The radar update rate is arbitrarily set to 1 Hz. To simulate
realistic distortions of each RCS value, Gaussian noise and a Swer-
ling detectability model are incorporated into each RCS signal. The
addition of Gaussian noise transforms the RCS from a truth value to
an estimate. The specific parameters can be found in Table 1.

To summarize, the objects under test have complex motion with
tumble, roll, and variable viewing angles, yielding complex time
series of RCS estimates. The signals are noisy and have missing
data points. Each RCS signal dataset contains variable values for
each of the aforementioned parameters. Therefore, the same classi-
fier is expected to correctly label RCS signals from objects moving
at highly varied speeds in highly varied motion paths with different
amounts of noise.

Table 1 Generation parameters for A4 and B4 datasets

Parameters A4 B4

Number of classes 4 4
Tumble rate (rad/sec*max) 0.015, 0.1, 0.5 0.015, 0.1, 0.5, 1
Roll rate (rad/sec*max) 0.015, 0.1, 0.5 0.015, 0.1, 0.5, 1
Signal to noise ratio (dB) 25, 15 25, 15, 5
Viewing vector angle (degrees) 0, 20 0, 20, 40, 60
Swerling model 2 2
Probability of false alarm 0.0001 0.0001
Number of pulses 10 10
Signal length (samples) 501 501
Number of signals 121,320 363,960

4 EXPERIMENTS

Two datasets are created using the methods described. One is used
for training, and the other for evaluation/testing. The parameters
used to create these dataset are listed in Table 1. The datasets in this
paper are named A4 and B4 respectively because they both contain
four classes but have different parameter values.

All experiments were run on a Ubuntu 16.04 machine with 32GB
of RAM, a Xeon E5-1620 v4 @ 3.5GHz x 8 CPU, a Samsung
860 EVO SSD, and a Nvidia Titan X (Maxwell edition) GPU. The
PyTorch and SciPy library versions used for training and evaluation
are 0.1 and 1.1 respectively.

4.1 Residual Network

Our 1D residual network architecture is inspired from He et al. [10].
Two-dimensional 3×3 convolutional filters were replaced by one-
dimensional 3×1, 5×1, and 7×1 filters, but the original block
module structure and skip connections are maintained. See Figure 6
for a detailed view of the 18-layer network architecture. The residual
network was run over 30 epochs and updated using the Adam [34]
optimizer with a learning rate of 0.001. Unlike the original imple-
mentation of ResNet, batch normalization is done during training to
avoid overfitting. The batch size for training is 128 signals for all
models except for the 152-layer residual network due to GPU mem-
ory constraints and is instead run with a batch size of 32 signals.
The learning rate is decayed by 70% if the current validation accu-
racy does not improve compared to the average of the previous five

IET Research Journals, pp. 1–9
c© The Institution of Engineering and Technology 2015 3



Cone Cylinder Plate

(5.1) (5.2) (5.3) (5.4) (5.5) (5.6)

(5.7) (5.8) (5.9) (5.10) (5.11) (5.12)

Fig. 5: There is tremendous variation among the cone, cylinder, and plate RCS signals on the top row. Those signals have rotation about a
fixed axis at a relatively slow speed and zero noise. The bottom row features 2 more realistic cone, cylinder, and plate RCS signals. The salient
features present in the top examples are now gone.

Table 2 The number of each respective model in the A5 dataset.

Cone Cylinder Plate Sphere Trapezoidal Prism

Train (#) 24,201 25,189 29,041 19,311 2,258
Test (#) 1,871 2,038 2,214 1,623 254
Train (%) 24.2 25.2 29.0 19.3 2.3
Test (%) 23.4 25.4 27.3 20.3 3.2
Models 11 12 30 5 1

validation accuracies. The network with the lowest validation error
is saved and used to evaluate the test data. The 18-layer residual
network requires five minutes to train while the 152-layer residual
network requires nearly three hours to train. The time required to
evaluate a signal with the listed hardware is on the order of tens of
microseconds, allowing real time signal classification.

4.2 Expanding the A4 Dataset

In secondary tests we expand our four class dataset to include a
new trapezoidal prism class. We augment the dataset to answer the
question of how our model performance would be affected by the
addition of a smaller class of signals. This object is selected such that
it closely resembles one of the original classes, i.e. the plate class.
One trapezoidal prism class model was created. The new dataset dis-
tribution is recorded in Table 2. The number of signals for the new
class is significantly lower than the other classes. We call this dataset
A5 because is contains the same motion parameters as A4 but has an
extra shape class.

4.3 Siamese Network

Our initial hypothesis was that our residual network would mis-
classify signals belonging to the class with the fewest instances,
confusing them with one of the larger classes. If we assume one class
will be confused, the loss function will be minimized by misclassi-
fying signals in the smallest class. In order to test our hypothesis,
we compare the performance of the residual network with a siamese
network. A siamese network consists of two feature extractor mod-
ules, each outputting a lower dimensional, compared to the original
input, feature vector. The goal of our siamese network is to cluster
signals from the same class in close proximity while moving signals
from different classes farther apart in feature space. This network is
chosen such that the smaller class is less likely to be grouped with
another class. The feature extractor modules share the same param-
eter so that the output vectors can be compared symmetrically. The
18-layer residual networks are used as the feature extractors in the

siamese architecture. As with our other trained CNNs, the siamese
network is trained using the Adam optimizer with batch sizes of
128 signals for 30 epochs. The learning rate was also initialized
and adjusted congruently. The comparator or loss function requires
a margin hyperparameter to separate signals of different classes:

L =
N

∑
i

yi · ‖xi
1− xi

2‖
2
2 +(1− yi) ·max(0,m−‖xi

1− xi
2‖

2
2) (1)

The loss function encourages signals in feature space synthesized
from the same type of model to converge while forcing signals in
feature space belonging to different models farther apart. A CNN
generates a fixed length feature representation of the input signal
from learned feature extractors. The similarity between feature rep-
resentations of two signals, x1 and x2, is measured with the L2
distance metric. The binary label y = 1 if the signals are from the
same shape primitive model then, and y = 0 if the signals are not
from the same primitive. Signals from the same shape primitives
are forced closer in feature space. Whereas, signals from different
shape primitives are forced apart if the distance between the fea-
ture representations are closer then the margin m. Since the network
requires two signals, evaluation is computed by measuring the sim-
ilarity between a test signal and a set of signals from the training
dataset. Several methods were attempted as classifiers but ultimately
a nearest neighbor classifier performed with the greatest accuracy.
An input signal first passes through the feature extractor network to
produce the corresponding test signal feature vector. The test feature
vector is compared to a set of training feature vectors. The most sim-
ilar feature vector to the test feature vector assigns its label to the test
vector. Other methods such as a k-nearest neighbor with k > 1and a
support vector machine (SVM) were also used but did not perform
as well.

4.4 Robustness Test

In order for the classifier to be utilized in real-world applications,
it must make accurate predictions on signals with previously unseen
distortions. Signal distortions such as occlusion, saturation, and clut-
ter can affect monostatic RCS signals. Occlusion, in this work, is
defined as zeroing a subset of a signal’s RCS values. Clutter is
defined as random amplitude spikes at random locations within a
signal. Saturation or clipping is a hard cutoff at a set threshold that
limits a signal’s amplitude. Subsampling is the removal of a random
contiguous section of a signal. Occlusion differs from subsampling
because occluded signals have the same number of samples after
the distortion is applied unlike signal subsampling. As a robustness

IET Research Journals, pp. 1–9
4 c© The Institution of Engineering and Technology 2015



Fig. 6: An 18-layer convolutional network is trained to ana-
lyze a noisy RCS signal. The architecture is strongly inspired by
ResNet [10]. Skip connections are shown as curved arrows. Unlike
ResNet, batch normalization is incorporated into the model.

test, the network is trained on dataset A4 which only contains sig-
nals distorted by noise and Swerling dropout. The trained network
then evaluates a test set of the A4 dataset that is distorted by one
of the previously mentioned distortions. The degree of distortion is
varied in each test, e.g. the test signals are saturated to 75% of their
maximum amplitude. The residual architecture can receive signals
of various dimensions as its input because of an average pooling
layer before the end of the feature extractor module. Subsampling
is implemented by circularly shifting the signal by a random integer
and then setting the last n elements to zero.

4.5 Refiner Network

This section is inspired by the work done by Shrivastava et al. [35],
where the authors train a refiner network to make generated images
appear more realistic. This network resembles a generative adver-
sarial network (GAN) [8] where a generating network tries to create
“realistic” data and a discriminator network decides whether the
data is real or fake. The generator network iteratively improves the
generated image while the discriminator network learns to more
accurately discern the real and fake data apart. Instead of generat-
ing data from a noise distribution, as with the classic GAN example,
a refiner network converts simulated data into data that more resem-
bles the realistic data. In this work we use a refiner network to make
our simulated RCS signals look like simulated signals with added

Fig. 7: Two signals are fed into two CNNs with shared parameters.
The output feature vectors are compared via the Siamese network
loss function 1. The target label is equal to one if the two signals
belong to the same class and zero otherwise.

Fig. 8: The refiner network and the discriminator work in a similar
adversarial manner as a generative adversarial network. The refiner
optimizes the simulated signals to look more like the unlabeled real-
istic data while the discriminator tries to distinguish the difference
between the refined and realistic signals.

noise. The refiner network maintains the structure of our signal while
adding features to make it appear more like the signals with noise.
The parameters used for the simulated dataset are similar to A4
dataset except that no noise is added to the signal and rotation and
roll rates are decreased.

The refiner network is a 3-layer CNN that takes a simulated signal
as input and outputs a refined signal of the same size. The discrimi-
nator network is a 5-layer CNN that receives the refined signal as
input and outputs a vector probability map. The probability map
determines which parts of the input signal appear realistic to the
discriminator. The refiner and discriminator networks have separate
loss functions and are trained iteratively. The refiner network’s loss
function is a combination of the distance between the input signal
and the generated signal and the likelihood that the discriminator
believes that the refined signal is real. The discriminator network’s
loss function is a combination of the likelihood that the discrimi-
nator believes that the refined signal is real and the likelihood that
the discriminator is unsure that the real data is real. Both networks
are trained for 50 epochs with the Adam optimizer. For each epoch
the refiner network is trained twice while the discriminator is only
trained once.

IET Research Journals, pp. 1–9
c© The Institution of Engineering and Technology 2015 5



Fig. 9: The result of the refiner network is shown above. The refiner
network takes the signal in (a) as input and returns the signal in (b).
It learns to make this transformation by observing signals with noise
like the signal in (c).

1 18 34 50 101 152
Number of Layers

0

2

4

6

8

10

12

Te
st
 S
et
 E
rr
or
 (%

)

10.2

3.2 2.8 2.9 3.0 2.5

8.2

2.2 2.1 2.1 2.2 2.0

A4
B4

Fig. 10: Several residual networks of different lengths are evalu-
ated on both the A4 and B4 datasets. As the number of layers in the
architecture increases the test error on either dataset decreases but
only achieves marginal improvement past a depth of 18 layers.

5 RESULTS & DISCUSSION

In this section we explore the performance of our trained CNNs
on our generated datasets. We also compare different architecture
performance using an augmented dataset, investigate the robust-
ness of our classifier, and explore improving our simulated data
post-generation.

5.1 Classification on A4 and B4 Datasets

Several residual networks with layer depths shown in Figure 10 are
trained as described in the experiments section, on both A4 and B4
datasets. Best performance is achieved using the 152-layer resid-
ual networks, with classification error scores of 2.5% and 2.0% on
datasets A4 and B4 respectively, as shown in Figure 10. While the
general trend implies that deeper networks perform better, this is
not always true. The 101-layer network performs slightly worse than
the 50-layer and 152-layer networks for both the A4 dataset (2.9%
vs. 3.0% vs 2.5% for A4) and the B4 dataset (2.1% vs. 2.2% vs.
2.0%). Since all of these networks were trained with the same data,
hyperparameters, and appropriately scaled architecture for the given
depths, it is difficult to explain this fluctuation in test performance.
Test performance saturates for the 18-layer network, and perfor-
mance changes only slightly for larger networks. As network size

Table 3 Accuracy performance of support vector machine (SVM), decision
tree (DT), single-layer convolutional neural network (CNN), and residual network
(RN) algorithms on the A4 dataset. The leftmost column represents the signal
features that were used by each classification algorithm. Common signal statis-
tics (SS) represents feature vectors comprised of the mean, standard deviation,
and extremum of a signal. Transform representations (TR) represent feature
vectors comprised of coefficients from the Fourier and Wavelet transforms of a
signal. Since convolutional neural networks learn a feature representation, only
the original signals are used as input.

SVM DT 1L-CNN RN18 RN152

Original 0.557 0.485 0.898 0.968 0.975
SS 0.863 0.849 - - -
TR 0.707 0.607 - - -

TR+SS 0.742 0.828 - - -

increases, so does the ability to learn more complex features. But
larger networks also have a propensity to overfit if the dataset used
for training is not sufficiently large and representative of the dis-
tribution of each class. When overfitting occurs, training accuracy
will continue to improve while test accuracy continues to degrade.
Since Figure 10 features test error, and the A4 and B4 datasets are
sufficiently large, the networks are likely not overfit, but at satura-
tion for test accuracy given the complexity of useful signal features.
Likely, the small deviations in test performance stem from each net-
work converging on different local minima in the optimization plane.
Initial conditions and when training is stopped may have effects on
which minima a network is likely to converge on.

Models trained on the B4 dataset perform better than models
trained on the A4 dataset across all network depths. As a base-
line, a neural network and non-residual convolutional neural network
were trained and evaluated on the A4 dataset with the correspond-
ing test errors, 29.5% and 6.1%. The neural network contains six
layers, dropout, and non-linear layers. Increasing the number of
layers in the neural network did not significantly improve results.
The non-residual convolutional neural network contained 18 layers
and is trained with the same training parameters described in the
experiments section. When the number of layers in the non-residual
convolutional network was increased, performance plateaued and
then began to degrade.

Our classification results for the residual networks may appear
counter-intuitive at first glance, since CNNs typically perform worse
on datasets that have more variation. Datasets with more variation
are simply more difficult to learn because the CNN will have to
learn specific filters to deal with that variation. Not only does the
B4 dataset contain more signals but it contains faster roll and tum-
ble rates. The faster roll and tumble rates for our signals actually
increases the amount of information per sample because the models
we use to generate our signals have large distinct edges and smooth
surfaces. If instead the models used had rough surfaces and less dis-
tinct edges, information would be lost by increasing the roll and
tumble rates. The B4 dataset also contains signals with lower SNR
rates and more varied viewing angles, which decrease the amount
of information within the signals. Regardless of the size of the net-
work, test performance on the B4 dataset was greater than on the
A4 dataset. It was for this reason that the A4 dataset was selected to
create new datasets and to further train/test our models. If a more dif-
ficult dataset is used, then there will be a clearer distinction between
the results of more advanced networks.

In addition to neural networks, we assess the performance of
other machine learning classification algorithms such as support vec-
tor machines (SVM) and decision trees (DT) on the A4 dataset.
The SVM algorithm utilizes the radial basis function kernel with
a gamma value equal to reciprocal of the number of input features.
Multiple one-against-one classifiers are aggregated to form the final
SVM classifier. As for the DT, the Gini criterion is used to measure
the quality of the split in the tree and decision nodes are randomly
chosen to be further split. The minimum number of samples to be a
leaf node is set to five, and the minimum number of samples required
to split a decision node is two. Unlike deep learning algorithms, fea-
tures must be manually crafted for the SVM and DT classifiers to

IET Research Journals, pp. 1–9
6 c© The Institution of Engineering and Technology 2015



Fig. 11: The confusion matrices for all siamese networks and the single residual network. Confusion matrices starting from the left to the right
belong to the single network, the siamese network with nearest neighbor, siamese network with k nearest neighbor, and siamese network with
support vector machine. The classes are enumerated as (0) cone, (1) cylinder, (2) plate, (3) spheroid, and (4) trapezoidal prism.

ANN NN KNN SVM
Classifier

0

1

2

3

4

5

6

7

8

Te
st
 S
et
 E
rr
or
 (%

)

4.0

6.8 6.9

3.5

Single
Siamese

Fig. 12: A single residual network’s performance on the A5 test
dataset is compared to the performance of three Siamese networks
with various classification layers. ANN stands for artificial neural
network, NN is nearest neighbor, kNN is k nearest neighbor, and
SVM stands for support vector machine.

attain optimal performance. For comparison the SVM and DT clas-
sifiers are trained and evaluated on the complete length signals from
the A4 dataset and achieve accuracies of 55.7% and 48.5% respec-
tively, as shown in Table 3. Common signal statistics (SS) such as
minimum and maximum are combined with low order cumulants
[36] to form a representation of the RCS signals. This representation
improves upon the previous the accuracy of the classifiers to 86.3%
and 84.9%. Following the work of Byl [37] and Zhang [38], more
complex descriptive features such as Fourier Transform frequency
responses and Wavelet Transform coefficients are used to repre-
sent the signals. Specifically, the Fast Fourier Transform generates
frequency coefficients and the Discrete Wavelet Transform (DWT)
symmetrically pads signals during the transform in order to avoid
inaccurate calculation of the DWT. The first 50 coefficients from
each transform are concatenated to form the feature vector represen-
tation. This method, which we call transform representations (TR),
is combined with the SS features to achieve accuracies of 74.2%
and 82.8%. For reference our one layer CNN (1L-CNN) has a test
accuracy of 89.8% on the A4 dataset, Figure 10.

5.2 Classification on A5 Dataset

The siamese network structure has been used on a variety of tasks
such as signature matching and facial identification with high per-
formance [39, 40]. This type of network performs most effectively
when the number of classes in a dataset is large and the number of
data per class if relatively low. The architecture’s unique comparator
function forces input from the same class to cluster in high dimen-
sional space and input from different classes to be farther apart in

6-Layer CNN ResNet 18 ResNet 152
0

2

4

6

8

10

12

14

Te
st
 S
et
 E
rr
or
 (%

) 10.1

2.9 2.6

12.0

8.5

5.3

12.6

7.9

5.7

KNN
SVM
NN

Fig. 13: Three different classifier modules are compared after a
CNN feature extractor of varied depths. The nearest neighbor clas-
sifier achieves the highest overall accuracy consistently across all
architectures tested.

high dimensional space. The loss function for a typical CNN classi-
fier is the negative log likelihood function which does not contain
any constraint on how far apart the output vectors of the feature
extractor module are. The A5 dataset contains the same set of param-
eters as A4 but includes an additional geometric model of trapezoidal
prism. The additional class contains only one model and makes up a
small portion of the total signals in the A5 dataset.

The A5 dataset is a superset of the A4 dataset, but augmented with
an additional and easily-confused shape class. The results of this
experiment are shown in Table 4. The single residual network outper-
forms all types of the siamese networks in terms of overall accuracy
as shown in Figure 12. Initially it appears that the lack of clustering
term in the objective function does not reduce performance on the
A5 dataset, however the CNN could maintain high accuracy even
while misclassifying all of the signals in the newest class. To fur-
ther investigate this result the precision, recall, and the F1-score of
each class is calculated and shown in Table 4. The siamese networks
with the k-nearest neighbor and support vector machine classifiers
misclassified the trapezoidal prism class in every case. The single
residual network and the siamese network with the nearest neighbor
classifier were both able to correctly classify the trapezoidal prism
class a majority of the time.

In Table 4 we can see that the F1-score for the trapezoidal class
is greater in the single network section than the siamese network
section. Overall the average F1-score across classes is 0.948 and
0.956 for the single network and siamese network respectively. If
we weigh the F1-score by the number of signals per class there is
an even larger difference in performance. The weighted F1-score of

IET Research Journals, pp. 1–9
c© The Institution of Engineering and Technology 2015 7



Table 4 Accuracy performance comparison between a single residual network and a siamese network with a NN classifier on the A5 dataset

Single Network Siamese Network+NN

Class Precision Recall F1-Score Precision Recall F1-Score

Cone 0.94 0.89 0.91 0.92 0.95 0.94
Cylinder 0.96 0.96 0.96 0.95 0.94 0.95
Plate 0.94 0.97 0.95 0.99 0.96 0.98
Spheroid 0.98 1.00 0.99 0.98 1.00 0.99
Trapezoidal Prism 0.93 0.94 0.93 0.95 0.89 0.92

the single network and siamese network are 0.947 and 0.959 respec-
tively. It appears that the single network showed high performance
on the trapezoidal prism class because it misclassified more of the
signals in the cone class. The siamese network with the nearest
neighbor classifier performs well because the feature extractor mod-
ule is better able to separate the clusters for each class. Intuitively
we expect the k nearest neighbor and support vector machine classi-
fiers to outperform the nearest neighbor classifier, but our results in
Figure 13 suggest otherwise. The dimensionality of the output vector
from the feature extractor module may be a potential reason that the
nearest neighbor classifier performs better. As the number of dimen-
sions increase, the k nearest neighbor algorithm tends to perform
worse due to the increasing space in between points.

5.3 Robustness Metric Performance

A CNN classifier’s ability to handle noisy input data can be eval-
uated in multiple ways, such as testing on a novel set of data with
distortions seen in the training data or testing on a novel set of data
with distortions unseen in the training data. Monostatic radar sig-
nals can have a variety of distortions in real applications such as
signal occlusion, clutter, sensor saturation, subsampling, or a combi-
nation of several. Since generating a dataset with every combination
of signal distortions is unwieldy, we instead decide to evaluate our
system’s robustness to distortions by evaluating our model on data
with distortions not seen in the training data. The results shown in
Figure 14 are the F1-score per class from a single 18-layer residual
network. However, the robustness results for networks with more
layers is nearly identical and not presented. The evaluation set was
generated via the method described in the experiments section.

The network performs remarkably well on signals that have been
occluded by even 75% of the total signal, even though no dropout
layers are used to train the model. Occlusion may not affect our
network significantly because the rotation rates used in our dataset
generation are relatively large and occasionally the shape model is
rotating several times within the full window of sampling. Even if
the signal is occluded significantly, some signals with high rotation
rates may contain enough information for classification. However
signals generated with slower rotation rate parameters do not appear
to complete rotations multiple times within a full window. For these
cases the CNN is able to discern the object within a limited view-
ing window. The CNN is however very sensitive to signal clutter,
accuracy-per-class drops as soon as clutter is introduced. Clutter in
this work is the addition of random peaks in a signal and CNNs are
sensitive to slight distortions to input data. This distortion is sim-
ilar to the distortion created by adversarial attacks such as FGSM
[41], except that we are adding distortions with random amplitudes
at random locations. Most CNNs are not robust to adversarial attacks
and it appears that clutter approximates an adversarial attack in this
domain. The CNN is resilient to signal saturation up to roughly
15%, then performance decreases significantly soon after. Signals
with heavy saturation begin to appear indistinguishable from each
other, and the filters that the CNN uses to detect features cannot dis-
tinguish between each class. The rise in F1-score of some of the
classes seems to be an artifact of the dataset instead of a feature
of the network. The final distortion is subsampling the input signal.
This measure is similar to the occlusion distortion but the number
of total samples in the signal do not change in the occlusion distor-
tion. The results of subsampling show that the CNN can use signals
with lengths as small as 25 samples as input and achieve a reason-
able F1-score. The performance halves when input size is 5% of its

Fig. 14: The single 18 layered residual network’s robustness per-
formance is shown for several novel distortions. This benchmark
is a way to compare a network robustness to realistic signal distor-
tions found RCS systems. Signal occlusion, clutter, saturation, and
subsampling are the realistic distortions used for this benchmark.

original length. The siamese network evaluated with the robustness
metric is not included because the previously mentioned siamese
testing method compares an input signal to a subset of the training
data. Since the training data does not contain the distortions of the
evaluation data, unsurprisingly, the siamese network performs very
poorly.

5.4 Classification on Refined Dataset

In order to compare the difference between the simulated dataset
and the refined dataset we train separate three layered convolu-
tional neural networks. The network’s performance was evaluated
by classifying simulated signals with added white Gaussian noise.
The simulated signals with added noise were also used as “real”
data in the refiner network training. Overall the model’s performance
on the evaluation dataset is greater when the model is trained using
the refined dataset by 3.5%. The accuracy of the network trained on
the simulated subset A4 dataset is 86.7%, while the accuracy of the
network trained on the refined dataset was 90.2%.

No simulator can perfectly model the all of the nuances and vari-
ables that are required to create real data. Therefore training a CNN
on simulated data typically does not perform well on real data. This
does not mean that networks should be trained with only real data
because representative real data is difficult and expensive to obtain.
Real data is also potentially biased in terms of only representing cer-
tain occurrences and typically few variables are able to be controlled
when creating real datasets. Simulated data is useful because very
large datasets can be generated easily. Adjustments can be made
one variable at a time and all parameters used to create that data
is known at every timestep. The generative CNN called the refiner
network described in Section 4 makes simulated data appear more
like real data, shown in Figure 9. Using the refined data to train a
small network on a subset of our A4 dataset results in a 3.5% accu-
racy improvement over training using the equivalent simulated data.
For that test the only “realistic” feature added to the “real” data was

IET Research Journals, pp. 1–9
8 c© The Institution of Engineering and Technology 2015



Fig. 15: Some examples of signals pre and post refinement. The
structure of the signal is maintained but pseudo noise is added to the
original signal from the refiner network.

noise. In Figure 9 we see that the refined signal seemingly adds noise
to the simulated signal but maintains the structural elements of the
signal.

6 Conclusion

To the best of our knowledge, we are the first to train convolutional
neural networks to classify object shape from monostatic radar sig-
nals. We expand upon the MATLAB library POFacets to generate
large datasets with a variety of selected parameters. Realistic motion,
added noise, and Swerling dropout enhance the initial simulation
generation. Utilizing the latest in deep learning architecture we cre-
ate a 1D residual network capable of achieving test error results as
low as 2-2.5% on our generated datasets. Our A4 dataset is aug-
mented with an additional test and then evaluated with a siamese
network architecture. The siamese CNN does perform as well in
terms of accuracy but surpasses the performance of the single resid-
ual network in terms of average F1-score. The robustness of our
CNN is then evaluated on signals with previously unseen realistic
distortions. The single residual network performs well on signals
with occlusion and subsampling but performs poorly on signals with
clutter and saturation. We explored increasing the quality of the sim-
ulated signals using a state of the art refiner network. Deep learning
models trained on the refined signals outperform models trained on
the original simulated data.

ACKNOWLEDGMENT

This project was funded by Lockheed Martin. We would like to
thank Rowland Escritor and Kevin Vance for their substantial efforts
coordinating and facilitating this project.

7 References
1 Swerling, P.: ‘Probability of detection for fluctuating targets’, IRE Transactions on

Information Theory, 1960, pp. 269–308
2 Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., et al.:

‘Automatic differentiation in pytorch’, , 2017
3 Jones, E., Oliphant, T., Peterson, P.: ‘{SciPy}: open source scientific tools for
{Python}’, , 2014

4 Chatzigeorgiadis, F. ‘Development of code for a physical optics radar cross section
prediction and analysis application’. Monterey California. Naval Postgraduate
School, 2004

5 Touzopoulos, P., Boviatsis, D., Zikidis, K.C.; ‘3d modelling of potential targets
for the purpose of radar cross section (rcs) prediction: Based on 2d images and
open source data’, Military Technologies (ICMT), 2017 International Conference
on, IEEE, 2017, pp. 636–642

6 Krizhevsky, A., Sutskever, I., Hinton, G.E. ‘Imagenet classification with deep con-
volutional neural networks’, Advances in neural information processing systems,
2012, pp. 1097–1105

7 Simonyan, K., Zisserman, A.: ‘Very deep convolutional networks for large-scale
image recognition’, arXiv preprint arXiv:14091556, 2014

8 Goodfellow, I., Pouget.Abadie, J., Mirza, M., Xu, B., Warde.Farley, D., Ozair, S.,
et al. ‘Generative adversarial nets’, Advances in neural information processing
systems, 2014, pp. 2672–2680

9 Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al. ‘Going
deeper with convolutions’, Proceedings of the IEEE conference on computer vision
and pattern recognition, 2015, pp. 1–9

10 He, K., Zhang, X., Ren, S., Sun, J. ‘Deep residual learning for image recognition’,
Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778

11 Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L.: ‘Densely connected
convolutional networks’, arXiv preprint arXiv:160806993, 2016

12 Kouemou, G. ‘Radar target classification technologies’. In: Radar Technology.
(InTech, 2010.

13 Lang, K.J., Waibel, A.H., Hinton, G.E.: ‘A time-delay neural network architecture
for isolated word recognition’, Neural networks, 1990, pp. 23–43

14 Anderson, J.A., Gately, M.T., Penz, P.A., Collins, D.R.: ‘Radar signal categoriza-
tion using a neural network’, Proceedings of the IEEE, 1990, pp. 1646–1657

15 Jordanov, I., Petrov, N.; ‘Sets with incomplete and missing datann radar signal
classification’, Neural Networks (IJCNN), 2014 International Joint Conference on,
IEEE, 2014, pp. 218–224

16 Jordanov, I., Petrov, N., Petrozziello, A.; ‘Supervised radar signal classification’,
Neural Networks (IJCNN), 2016 International Joint Conference on, IEEE, 2016,
pp. 1464–1471

17 Soto, A., Mendoza, A., Flores, B.C.; ‘Optimization of neural network architecture
for classification of radar jamming fm signals’, Radar Sensor Technology XXI,
International Society for Optics; Photonics, 2017, p. 101881H

18 Mendoza, A., Soto, A., Flores, B.C.; ‘Classification of radar jammer fm signals
using a neural network’, Radar Sensor Technology XXI, International Society for
Optics; Photonics, 2017, p. 101881G

19 Hara, Y., Atkins, R.G., Yueh, S.H., Shin, R.T., Kong, J.A.: ‘Application of neu-
ral networks to radar image classification’, IEEE Transactions on Geoscience and
Remote Sensing, 1994, pp. 100–109

20 Zhang, Y., Wu, L.: ‘Crop classification by forward neural network with adaptive
chaotic particle swarm optimization’, Sensors, 2011, pp. 4721–4743

21 Park, S., Hwang, J.P., Kim, E., Lee, H., Jung, H.G.: ‘A neural network approach
to target classification for active safety system using microwave radar’, Expert
Systems with Applications, 2010, pp. 2340–2346

22 Rahman, A., Yavari, E., Lubecke, V.M., Lubecke, O.B.; ‘Noncontact doppler radar
unique identification system using neural network classifier on life signs’, Biomed-
ical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS), 2016
IEEE Topical Conference on, IEEE, 2016, pp. 46–48

23 Szymczyk, P., Szymczyk, M.: ‘Classification of geological structure using ground
penetrating radar and laplace transform artificial neural networks’, Neurocomput-
ing, 2015, pp. 354–362

24 Kabakchiev, C., Behar, V., Garvanov, I., Kabakchieva, D., Rohling, H.; ‘Detec-
tion, parametric imaging and classification of very small marine targets emerged
in heavy sea clutter utilizing gps-based forward scattering radar’, Acoustics, Speech
and Signal Processing (ICASSP), 2014 IEEE International Conference on, IEEE,
2014, pp. 793–797

25 Lundén, J., Koivunen, V.; ‘Deep learning for hrrp-based target recognition in mul-
tistatic radar systems’, Radar Conference (RadarConf), 2016 IEEE, IEEE, 2016,
pp. 1–6

26 Morgan, D.A.: ‘Deep convolutional neural networks for atr from sar imagery’, Pro-
ceedings of the Algorithms for Synthetic Aperture Radar Imagery XXII, Baltimore,
MD, USA, 2015, p. 94750F

27 Kim, Y., Moon, T.: ‘Human detection and activity classification based on micro-
doppler signatures using deep convolutional neural networks’, IEEE Geoscience
and Remote Sensing Letters, 2016, pp. 8–12

28 Gong, M., Zhao, J., Liu, J., Miao, Q., Jiao, L.: ‘Change detection in synthetic aper-
ture radar images based on deep neural networks’, IEEE transactions on neural
networks and learning systems, 2016, pp. 125–138

29 Mason, E., Yonel, B., Yazici, B.; ‘Deep learning for radar’, Radar Conference
(RadarConf), 2017 IEEE, IEEE, 2017, pp. 1703–1708

30 Zhang, X., LeCun, Y.: ‘Text understanding from scratch’, arXiv preprint
arXiv:150201710, 2015

31 Kiranyaz, S., Ince, T., Gabbouj, M.: ‘Real-time patient-specific ecg classifica-
tion by 1-d convolutional neural networks’, IEEE Transactions on Biomedical
Engineering, 2016, pp. 664–675

32 Stinco, P., Greco, M.S., Gini, F., La.Manna, M.: ‘Non-cooperative target recog-
nition in multistatic radar systems’, IET Radar, Sonar & Navigation, 2013,
pp. 396–405

33 Mathews, Z., Quiriconi, L., Böniger, U., Schüpbach, C., Weber, P.; ‘Learning
multi-static contextual target signatures’, Radar Conference (RadarConf), 2017
IEEE, IEEE, 2017, pp. 1568–1572

34 Kingma, D.P., Ba, J.: ‘Adam: A method for stochastic optimization’, arXiv preprint
arXiv:14126980, 2014

35 Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., Webb, R. ‘Learning
from simulated and unsupervised images through adversarial training’, The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017, p. 6

36 Xin, Z., Ying, W., Bin, Y.: ‘Signal classification method based on support vector
machine and high-order cumulants’, Wireless Sensor Network, 2010, p. 48

37 Byl, M.F., Demers, J.T., Rietman, E.A.: ‘Using a kernel adatron for object
classification with rcs data’, arXiv preprint arXiv:10055337, 2010

38 Zhang, L., Zhou, W., Jiao, L.: ‘Wavelet support vector machine’, IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2004, pp. 34–39

39 Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R. ‘Signature verification
using a" siamese" time delay neural network’, Advances in Neural Information
Processing Systems, 1994, pp. 737–744

40 Sun, Y., Wang, X., Tang, X. ‘Deep learning face representation from predict-
ing 10,000 classes’, Proceedings of the IEEE conference on computer vision and
pattern recognition, 2014, pp. 1891–1898

41 Goodfellow, I.J., Shlens, J., Szegedy, C.: ‘Explaining and harnessing adversarial
examples’, arXiv preprint arXiv:14126572, 2014

IET Research Journals, pp. 1–9
c© The Institution of Engineering and Technology 2015 9


