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Abstract

We present a novel method for communicating between
a moving camera and an electronic display by embedding
and recovering hidden, dynamic information within an im-
age. A small intensity pattern is added to alternate frames
of a time-varying display. A handheld camera pointed at the
display can receive not only the display image, but also an
underlying message. Differencing the camera-captured al-
ternate frames leaves the small intensity pattern, but results
in errors due to photometric effects that depend on camera
pose. Detecting and robustly decoding the message requires
careful photometric modeling for message recovery. The
key innovation of our approach is an algorithm that per-
forms simultaneous radiometric calibration and message
recovery in one convex optimization problem. By modeling
the photometry of the system using a camera-display trans-
fer function (CDTF), we derive an optimal online radiomet-
ric calibration (OORC) for robust computational messag-
ing as demonstrated with nine different commercial cam-
eras and displays. The online radiometric calibration al-
gorithms described in this paper significantly reduces mes-
sage recovery errors, especially for low intensity messages
and oblique camera angles.

1. Introduction

While traditional computer vision concentrates on ob-
jects that reflect environment lighting (passive scenes), ob-
jects which emit light, such as electronic displays, are
increasingly common in modern scenes. Unlike passive
scenes, active scenes can have intentional information that
must be detected and recovered. For example, displays with
QR codes [14] can be found in numerous locations such as
shop windows and billboards. However, QR-codes are very
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Figure 1. From the display to the camera, the light signal is af-
fected by display photometry, camera pose and camera radiometry.
In each pair of intensity histograms shown above, the left repre-
sents an image histogram before passing through the CDTF, and
the right represents the histogram after the CDTF.

simple examples because the bold, static pattern makes de-
tection somewhat trivial. The problem is more challeng-
ing when the codes are not visible markers, but are hidden
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Figure 2. Image Formation Pipeline: The image Id is displayed by
an electronic display with an emittance function e. The display is
observed by a camera with sensitivity s and radiometric response
function f .

within a displayed image. The displayed image is a light
field, and decoding the message is an interesting problem in
photometric modeling and computational photography. The
paradigm has numerous applications because the electronic
display and the camera can act as a communication chan-
nel where the display pixels are transmitters and the camera
pixels are receivers. Unlike hidden messaging in the dig-
ital domain, real-world camera-display messaging is a rel-
atively new area. The problem was introduced with inten-
sity modulation and fixed camera systems [2, 28, 34, 43, 1],
and extended to moving cameras [42, 41, 3], high-frequency
modulation [15, 27], and depth cameras [41]. In this paper,
we develop an optimal method for sending and retrieving
hidden time-varying messages using electronic displays and
cameras which accounts for the characteristics of light emit-
tance from the display using radiometric calibration. The
electronic display has two communication channels: 1) the
original display image such as advertising, maps, slides, or
artwork; 2) the transmission of hidden time-varying mes-
sages.

When light is emitted from a display, the resultant 3D
light field has an intensity that depends on the angle of ob-
servation as well as the pixel value controlled by the dis-
play. The emittance function of the electronic display is
analogous to the BRDF (bidirectional reflectance distribu-
tion function) of a surface. This function characterizes the
light radiating from a display pixel. It has a particular spec-
tral shape that does not match the spectral sensitivity curve
of the camera. The effect of the display emittance func-
tion, the spectral sensitivity of the camera and the camera
viewing angle are all components of our photometric model
for image formation as shown in Figure 2. Our approach
does not require measurement or knowledge of the exact
display emittance function. Instead, we estimate the en-
tire system transfer function as a camera-display transfer
function (CDTF) which determines the captured pixel value
as a function of the displayed pixel value. By using online
frame-to-frame estimation of the CDTF, no prior calibration
is required and the method is independent of the particular
choice of display and camera.

Although watermarking literature has many hidden mes-
saging methods, this area typically ignores the physics of

illumination. Display-camera messaging is fundamentally
different from watermarking because each pixel of the im-
age is a light source that propagates in free space. There-
fore, representations and methods that act only in the digital
domain are not sufficient.

The problem of understanding the relationship between
the displayed pixel and the captured pixel is closely related
to the area of traditional radiometric calibration [24, 7, 26].
In these methods, a brightness transfer function charac-
terizes the relationship between scene radiance and image
pixel values. The characterization of this function is done
by measuring a range of scene radiances and the corre-
sponding captured image pixels. Our problem in camera-
display messaging is similar but has important key differ-
ences. The CDTF is more complex than standard radiomet-
ric calibration because the system consists of both a display
and a camera, each device adding its own nonlinearities.
We can exploit the control of pixel intensities on the display
and easily capture the full range of input intensities. How-
ever, the display emittance function is typically dependent
on the display viewing angle. Therefore, the CDTF is de-
pendent on camera pose. In a moving camera system, the
CDTF must be estimated per frame; that is, an online CDTF
estimation is needed. Furthermore, this function varies spa-
tially over the electronic display surface.

We show that the two-part problem of online radiometric
calibration and accurate message retrieval can be structured
as an optimization problem. We present an elegant prob-
lem formulation where the photometric modeling leads to
physically-motivated kernel functions that are used with a
support vector machine classifier. We show that calibration
and message bit classification can be done simultaneously
and the resulting optimization algorithm operates in four di-
mensional space and is convex. The algorithm is a novel
method for online optimal radiometric calibration (OORC)
that enables accurate camera-display messaging. An exam-
ple message recovery result is shown in Figure 3. Our ex-
perimental results show that accuracy levels for message re-
covery can improve from as low as 40-60% to higher than
90% using our approach when compared to either no cali-
bration, or sequential calibration followed message recov-
ery. For evaluation of results, 9 different combinations of
displays and cameras are used with 15 different image se-
quences, for multiple embedded intensity values, and mul-
tiple camera-display view angles.

The contributions of the paper can be summarized as fol-
lows: 1) A new optimal online radiometric calibration with
simultaneous message recovery, cast as a convex optimiza-
tion problem; 2) photometric model of the camera display
transfer function; 3) the use of ratex patches to provide con-
tinual calibration information as a practical method for on-
line calibration; 4) the use of distribution-driven intensity
mapping as a practical method for visually non-disruptive
online calibration.



(a) Difference image (b) Thresholding (c) Our method

Figure 3. Comparison of message recovery with a naive method and the proposed optimal method (a) Difference of two consecutive frames
in the captured sequence to reveal the transmitted message. (b) Naive method: Threshold the difference image by a constant (threshold
T = 5 for this example). (c) Optimal Method: Bits are classified by a simultaneous radiometric calibration and message recovery.

2. Related Work

Watermarking In developing a system where cameras
and displays can communicate under real world conditions,
the initial expectation was that existing watermarking tech-
niques could be used directly. Certainly the work in this
field is extensive and has a long history with numerous sur-
veys compiled [5, 38, 31, 6, 16, 30]. Surprisingly, existing
methods are not directly applicable to our problem. In the
field of watermarking, a fixed image or mark is embedded
in an image often with the goal of identifying fraudulent
copies of a video, image or document. Existing work em-
phasizes almost exclusively the digital domain and does not
account for the effect of illumination in the image formation
process in real world scenes. In the digital domain, neglect-
ing the physics of illumination is quite reasonable; however,
for camera-display messaging, illumination plays a central
role.

From a computer vision point of view, the imaging pro-
cess can be divided into two main components: photometry
and geometry. The geometric aspects of image formation
have been addressed to some extent in the watermarking
community, and many techniques have been developed for
robustness to geometric changes during the imaging process
such as scaling, rotations, translations and general homog-
raphy transformations [8, 32, 9, 37, 21, 31, 33]. However,
the photometry of imaging has largely been ignored. The
rare mention of photometric effects [45, 40] in the water-
marking literature doesn’t define photometry with respect
to illumination; instead photometric effects are defined as
“lossy compression, denoising, noise addition and lowpass
filtering”. In fact, photometric attacks are sometimes de-
fined as jpeg compression [9].

Radiometric Calibration Ideally, we consider the pixel-
values in a camera image to be a measurement of light in-
cident on the image plane sensor. It is well known that the
relationship is typically nonlinear. Radiometric calibration
methods have been developed to estimate the camera re-

sponse function that converts irradiance to pixel values. In
measuring a camera response, a series of known brightness
values are measured along with the corresponding pixel val-
ues. In general, having such ground truth brightness is quite
difficult. The classic method [7] uses multiple exposure val-
ues instead. The light intensity on the sensor is a linear
function of the time of exposure, so known exposure times
enables ground truth light intensity. This exposure-based
method is used in several radiometric calibration methods
[24, 26, 7, 23, 19]. Our goal for the display-camera sys-
tem is related to radiometric calibration; the system con-
verts scene radiance to pixels (the camera), but also converts
from pixel to scene radiance (the display) so that the whole
camera-display system is a function that maps a color value
at the display to a color value at the camera.

The camera response in radiometric calibration is either
estimated as a full mapping where iout is specified for ev-
ery iin or as an analytic function g(iin). Several authors
[24, 4, 20] use polynomials to model the radiometric re-
sponse function. Similarly, we have found that fourth order
polynomials can be used for modeling the inverse display-
camera transfer function. The dependence on color is typ-
ically modeled by considering each channel independently
[24, 26, 7, 10]. Interestingly, although more complex color
models have been developed [18, 22, 39], we have found
the independent channel approach suitable for the display-
camera representation where the optimality criterion is ac-
curate message recovery.

Existing radiometric calibration methods are developed
for cameras, not camera-display systems. Therefore, dis-
play emittance function is not part of these prior meth-
ods. However, for the camera-display transfer function, this
component plays an important role. We do not use the mea-
sured display emittance function explicitly, but since the
CDTF is view dependent and the camera can move, our ap-
proach is to perform radiometric calibration per frame.

Other Methods for Camera-Display Communication
Camera-display communications have precedent in the



computer vision community, but existing methods differ
from our proposed approach. For example, researchers on
the Bokode project [25] presented a system using an invisi-
ble message, however the message is a fixed symbol, not a
time-varying message. Invisible QR codes were addressed
in [17], but these QR-codes are fixed. Similarly, traditional
watermark approaches typically contained fixed messages.
LCD-camera communications is presented in [28] with a
time-varying message, but the camera is in a fixed position
with respect to the display. Consequently, the electronic
display is not detected, tracked or segmented from the back-
ground. Furthermore, the transmitted signal is not hidden in
this work. Recent work has been done in high speed visi-
ble light communications [35], but this work does not uti-
lize existing displays and cameras and requires specialized
hardware and LED devices. Time-of-flight cameras have re-
cently been used for phase-based communication [44], but
these methods require special hardware. Interest in camera-
display messaging is also shared in the mobile communi-
cations domain. COBRA, RDCode, and Strata have de-
veloped 2D barcode schemes designed to address the chal-
lenges of low-resolution and slow shutter speeds typically
present in smartphone cameras [11, 36, 13]. Likewise,
Lightsync has targeted synchronization challenges with low
frequency cameras. [12].

3. System Properties

In our proposed camera-display communication system,
pixel values from the display are inputs, while captured in-
tensities from the camera are output. We denote the map-
ping from displayed intensities to captured ones as Camera-
Display Transfer Function (CDTF). In this section, we mo-
tivate the need for online radiometric calibration by briefly
analyzing factors that influence the CDTF.

Display Emittance Variation Displays vary widely in
brightness, hue, white balance, contrast and many other pa-
rameters that will influence the appearance of light. To af-
firm this hypothesis, an SLR camera with fixed parameters
observes 3 displays and models the CDTF for each one as
shown in Figure 4(a) (Samsung),4(b) (LG), and 4(c) (iMac).
Although each display is tuned to the same parameters, in-
cluding contrast and RGB values, each display produces a
unique CDTF.

Observation Angles Electronic displays emit light with
an angular dependence. Consider the image of an electronic
display captured by a camera from multiple angles as shown
in Figure 5. More oblique observation angles yield lower
captured pixel intensities. Additionally, there is a nonlinear
relationship between captured light intensity and viewing
angle.
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Figure 4. Variance of Light Output among Displays. An SLR
camera captured a range of grayscale [0,255] intensity values pro-
duced by 3 different LCDs. These 3 CDTF curves highlight the
difference in the light emittance function for different displays.
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Figure 5. Influence of observation angles. Using the Nikon-
Samsung pair, a range of grayscale [0, 255] values were displayed
and captured from a set of different observation angles. As ob-
servation angle became more oblique, the camera-display transfer
function changes.

0

1

2

3

4

5

6
x10

4

0 50 100 150 200 250

Intensity Value

(a) 30 ◦

0

1

2

3

4

5

6
x10

0 50 100 150 200 250

Intensity Value

4

(b) 45 ◦

0

1

2

3

4

5

6
x10

0 50 100 150 200 250

Intensity Value

4

(c) 60 ◦

Figure 6. Histograms of intensities captured from a uniform
display. Notice as observation angle changes, so does the distri-
bution of captured intensities illustrating the angular variation of
the display emittance function.

4. Methods
4.1. Photometry of Display-Camera systems

The captured image Ic from the camera viewing the elec-
tronic display image Id can be modeled using the image
formation pipeline in Figure 2. First, consider a particular
pixel within the display image Id with red, blue and green
components given by ρ = (ρr, ρg, ρb). The captured image



Ic at the camera has three color components (Irc , I
g
c , I

b
c ),

however there is no one-to-one correspondence between the
color channels of the camera sensitivity function and the
electronic display emittance function. When the monitor
displays the value (ρr, ρg, ρb) at a pixel, it is emitting light
in a manner governed by its emittance function and mod-
ulated by ρ. The monitor emittance function e is typically
a function of the viewing angle θ = (θv, φv) comprised of
a polar and azimuthal component. For example, the emit-
tance function of an LCD monitor has a large decrease in
intensity with polar angle (see Figure 6).

The emittance function has three components, i.e. e =
(er, eg, eb). Therefore the emitted light I as a function of
wavelength λ for a given pixel (x, y) on the electronic dis-
play is given by

I(x, y, λ) = ρrer(λ, θ) + ρgeg(λ, θ) + ρbeb(λ, θ), (1)

or
I(x, y, λ) = ρ · e(λ, θ). (2)

Now consider the intensity of the light received by one pixel
element at the camera sensor. Let sr(λ) denote the camera
sensitivity function for the red component, then the red pixel
value Irc can be expressed as

Irc ∝
∫
λ

[ρ · e(λ, θ))] sr(λ)dλ. (3)

Notice that the sensitivity function of the camera has a de-
pendence on wavelength that is likely different than the
emittance function of the monitor. That is, the interpretation
of “red” in the monitor is different from that of the camera.
Notice that a sign of proportionality is used in Equation 3
to specify that the pixel value is a linear function of the in-
tensity at the sensor, assuming a linear camera and display.
This assumption will be removed in Section 4.3.

Equation 3 can be written to consider all color compo-
nents in the captured image Ic as

Ic ∝
∫
λ

[ρ · e(λ, θ)] s(λ)dλ. (4)

where s = (sr, sg, sb).

4.2. Message Structure

The pixel value ρ is controllable by the electronic dis-
play driver, and so it provides a mechanism for embedding
information. We use two sequential frames in our approach.
We modify the monitor intensity by adding the value κ and
transmit two consecutive images, one with the added value
Ie and one image of original intensity Io. To get a rect-
angular frontal-view message, a homography warp is ap-
plied to the images only after frame subtraction. The re-
covered message depends on the display emittance function

and camera sensitivity function if the embedded message is
done by adding κ as follows:

Ie ∝
∫
λ

[(κ+ ρ) · e(λ, θ)] s(λ)dλ. (5)

Recovery of the embedded signal leads to a difference equa-
tion

Ie − Io ∝
∫
λ

[(κ) · e(λ, θ)] s(λ)dλ. (6)

The dependence on the properties of the display e and
the spectral sensitivity of the camera s remains. We use
additive-based messaging, instead of ratio-based methods,
because this structure is convenient for convexity of the al-
gorithm as described in Section 4.3.

The main concept for message embedding is illustrated
in Figure 7. In order to convey many “bits” per image, we
divide the image region into a series of block components.
Each block can convey a bit “1” or “0”. The blocks cor-
responding to a “1” contain the added value κ typically set
to 3 or 5 gray levels on the [0,255] scale, while the zero
blocks have no additive component (κ = 0). The message
is recovered by sending the original frame followed by a
frame with the embedded message and using the difference
for message recovery. The message can also be added to
the coarser scales of a image pyramid decomposition [29],
in order to better hide the message within the display image
content. The display can be tracked with existing methods
[42]. This message structure is decidedly very simple, so
the methods presented here can be applied to many message
coding schemes.

When accounting for the nonlinearity in the camera and
display, we rewrite Equation 4 to include the radiometric
response function f ,

Ic = f

(∫
λ

[ρ · e(λ, θ)] s(λ)dλ

)
. (7)

More concisely,
Ic = f (Id) , (8)

and the recovered display intensity is

Id = f−1 (Id) = g (Id) . (9)

We use polynomials to represent the radiometric inverse
function g(i). The same inverse function g is used for all
color channels. This simplification of the color problem is
justified by the accuracy of the empirical results. As the pur-
pose of the calibration algorithm is to explicitly deal with
nonlinear responses, no gamma correction is needed.

4.3. Optimal Online Radiometric Calibration
The two goals of message recovery and calibration can

be combined to a single problem. While ideal radiometric
calibration would provide a captured image that is a linear
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Figure 7. Message Embedding and Retrieval. Two sequential frames are sent, an original frame and a frame with an embedded message
image. Simple differencing is not sufficient for message retrieval. Our method (OORC) is used to recover messages accurately.

function of the displayed image, we show that calibrating
followed by message recovery only gives a relatively small
increase in message accuracy. However, if the two goals are
combined into a simultaneous problem we have two ben-
efits: 1) the problem formulation can be done in a convex
optimization paradigm with a single global solution and 2)
the accuracy increases significantly.

Let g(i) be the inverse function that is modeled with a
fourth order polynomial as follows

g(i) = a4i
4 + a3i

3 + a2i
2 + a1i+ a0. (10)

Consider two images frames io, where io is the original
frame and ie the image frame with the embedded message.
Note the use of io instead of Io for notational compact-
ness. Since we are using an additive message embedding,
we wish to classify the message bits as either ones or zeros
based on the difference image io − ie.

Taking into account the radiometric calibration, we want
to classify on the recovered data g(io) − g(ie). We have
found empirically that the inverse function can be modeled
by a fourth order polynomial, so that the function to be clas-
sified is

g(io)− g(ie) =
a4(i4o − i4e) + a3(i3o − i3e) + a2(i2o − i2e) + a1(io − ie).

(11)
In Equation 11, we see that the calibration problem has
a physically motivated nonlinear mapping function. That
is, we see that the original data (io, ie) can be placed into
a higher dimensional space using the nonlinear mapping
function Φ which maps from a two dimensional space to
a four dimensional space as follows

Φ(io, ie) =[
(i4o − i4e) (i3o − i3e) (i2o − i2e) (io − ie)

]
.

(12)

In this four dimensional space we seek a separating hyper-
plane between the two classes (one-bits and zero-bits). Our

experimental results indicate that these are not separable in
lower dimensional space, but the movement to a higher di-
mensional space enables the separation. Also, the form of
that higher dimensional space is physically motivated by the
need for radiometric calibration. Therefore our problem be-
comes a support vector machine classifier where the opti-
mal support vector weights and the calibration parameters
are simultaneously estimated. That is, we estimate

wTu+ b, (13)

where,w ∈ R4, b are the separating hyperplane parameters,
and u is the input feature vector. Since we want to perform
radiometric calibration, the four-dimensional input is given

u =
[
a4(i4o − i4e) a3(i3o − i3e) a2(i2o − i2e) a(io − ie)

]T
.

(14)
Notice that the wTu + b is still linear in the coefficients
of the inverse radiometric function. These coefficients and
the scale factor w are estimated simultaneously. We arrive
at the important observation that accounting for the CDTF
preserves the convexity of the overall optimization problem.
The coefficients of the function g are scaled by w, so that
calibration and classification can be done simultaneously,
and convexity of the SVM is preserved. We refer to this
method as optimal online radiometric calibration (OORC)
because it recovers radiometric parameters via convex opti-
mization for each frame.

Ratex Patches The standard problem of radiometric cal-
ibration is solved by varying exposure so that a range of
scene radiance can be measured. For CDTF calibration in
a single frame, patches are placed within the display image
that have intensity variation over the full range of display
brightness values (a linear variation with pixel values from
0 to 255). These radiometric textured calibration patches or



ratex patches are placed in inconspicuous regions of the dis-
play image such as an image corner. The ratex patches are
not used as part of the hidden message, but instead provide
training data in each frame for the OORC method of CDTF
calibration and message recovery. Consecutive frames of
ratex patches toggle between message bit “1” and message
bit “0” to provide training data for both message bits.

4.4. Hidden Ratex

We also introduce a method for radiometric calibration
that employs visually non-disruptive it hidden ratex map-
ping, since ratex patches can be visually obtrusive and
unattractive for applications. Rather than directly measur-
ing the effect that the CDTF has on known intensity values,
we measure the effect on the image histogram. Instead of
using ratex patches that have a linear variation over the full
intensity range, we use display images with intensity values
that are well-distributed over the full intensity range. We
estimate the CDTF by finding the mapping of the measured
histogram to the original histogram. For this approach to
work, we need to know the initial intensity histogram of
an image before it passes through the CDTF. We perform
as simple intensity mapping (equalization) on every image
before it is displayed, so the initial intensity histogram is
known and uniformly distributed. The camera-captured im-
age is intensity mapped to restore this distribution, after dis-
tortion by the CDTF. The inverse CDTF is computed and
corrected for in this approach and we refer to this method
as hidden ratex since no visible patches are used. The hid-
den ratex method is illustrated in Figure 1.

5. Results
For empirical validation, 9 different combination of dis-

plays and cameras are used, comprised of 3 displays: 1) LG
M3204CCBA 32 inch, 2) Samsung SyncMaster 2494SW,
3) iMac (21.5 inch 2009); and 3 cameras: 1) Canon EOS
Rebel XSi, 2) Nikon D70, 3) Sony DSC-RX100. Fifteen
8-bit display images are used. From each display image,
we create a display video of 10 frames: 5 frames with the
original display images interleaved with 5 images of embed-
ded time-varying messages. An embedded message frame
is followed by an original image frame to provide the tem-
poral image pair ie and io. The display image does not
change in the video, only the bits of the message frames.
Each message frame has 8 × 8 = 64 blocks used for mes-
sage bits (with 5 bits used for ratex patches for calibration
and classification training data). Considering 5 display im-
ages, with 5 message frames and 59 bits per frame results
in approximately 1500 message bits. The accuracy for each
video is defined as the number of correctly classified bits
divided by the total bits embedded and is averaged over all
testing videos. The entire test set over all display-camera
combinations is approximately 18,000 test bits.

We evaluate 4 methods for embedded message recovery.
Method 1 (Naive Threshold) has no radiometric calibration,
only the difference ie− io is used to recover the message bit
via thresholding. Method 2 (Two-step) is radiometric cal-
ibration using ratex patches followed by thresholding the
interframe difference ie− io for message recovery. Method
3 (OORC) is the optimal calibration where both radiomet-
ric calibration and message recovery are done simultane-
ously. Method 4 Hidden Ratex is calibration using hidden
ratex intensity mapping followed by simple differencing for
message recovery. The methods we introduced here (Meth-
ods 2-4) demonstrate significant improvement over naive
thresholding. For methods 2 and 3, training data from pix-
els in the ratex patches are used to train an SVM classi-
fier. For method 4, no visible patches are needed. For each
of the 9 display-camera combinations, the accuracy of the
4 message recovery methods was tested with 2 sets of ex-
perimental variables: 1) 0◦frontal camera-display view; 2)
45◦oblique camera-display view; and: 1) embedded mes-
sage intensity difference of 5; 2) embedded message inten-
sity difference of 3. The results of these tests are can be
found in Tables 1, 2, 3, and 4. Notice that naive thresh-
olding has low message recover rates (as low as 47.5% for
oblique views). Message recovery rates were highest for
the OORC method with recovery rates of 98-99% for most
camera display combinations even for oblique views. The
hidden ratex method also maintained near 90% recognition
rates for oblique views and had the advantage of having no
visible calibration patches.

6. Discussion and Conclusion
The results indicate a marked improvement in message

recovery over naive thresholding for camera-display mes-
saging with our methods. We demonstrate experimental
results for nine different camera-display combinations at
frontal and oblique viewing directions. We show that naive
thresholding, while intuitively simple, is a poor choice be-
cause the variation of display intensity with camera pose
is ignored. These methods lead to lower message recovery
rates, especially for oblique views (45◦) and small inten-
sity messages. Prior methods of digital watermarking do
not take into account the photometric effects of the camera-
display transfer function and the resulting dependence on
camera pose. Therefore these prior methods are likewise
prone to error. Our experimental results show that hidden,
dynamic messages can be embedded in a display image and
recovered robustly.
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Accuracy
(%)

Naive
Threshold

Two-
step

OORC Hidden
Ratex

Canon-
iMac

72.94 75.67 99.17 89.63

Canon-
LG

58.94 84.94 98.44 95.74

Canon-
Samsung

48.44 64.89 99.39 89.91

Nikon-
iMac

60.17 75.50 95.17 90.00

Nikon-LG 49.72 73.39 99.33 94.81
Nikon-
Samsung

47.22 72.89 95.00 89.54

Sony-
iMac

64.44 76.00 99.06 71.11

Sony-LG 56.11 75.61 98.56 90.93
Sony-
Samsung

47.50 79.11 98.89 87.80

Average 56.17 75.33 98.11 88.83

Table 1. This table shows our main result. Accuracy of embedded
message recovery and labeling with additive intensity κ = +3 on
[0,255] and captured with 45◦oblique view. Low κ values are de-
sirable (because they are less noticeable) but lead to larger errors,
especially at oblique views. Our calibration methods can greatly
increase accuracy (from 47-50% to over 90% ) in some cases.

Accuracy
(%)

Naive
Threshold

Two-
step

OORC Hidden
Ratex

Canon-
iMac

85.56 83.06 96.44 91.57

Canon-
LG

86.39 90.94 98.67 94.07

Canon-
Samsung

87.94 87.78 98.94 91.30

Nikon-
iMac

84.06 84.00 96.50 90.27

Nikon-LG 74.67 81.44 99.94 90.09
Nikon-
Samsung

77.33 86.06 98.00 91.57

Sony-
iMac

89.33 84.22 99.44 70.00

Sony-LG 87.61 95.39 99.72 80.74
Sony-
Samsung

80.00 83.78 96.26 84.54

Average 83.56 86.30 98.22 87.13

Table 2. Accuracy of embedded message recovery and label-
ing with additive intensity κ = +3 on [0,255] and captured at
0◦frontal view.

Accuracy
(%)

Naive
Threshold

Two-
step

OORC Hidden
Ratex

Canon-
iMac

97.06 94.50 99.83 95.37

Canon-
LG

87.89 99.00 99.39 99.44

Canon-
Samsung

71.67 88.11 100.00 95.37

Nikon-
iMac

91.89 93.67 96.00 96.11

Nikon-LG 81.56 95.11 99.94 98.88
Nikon-
Samsung

58.78 92.22 99.39 97.41

Sony-
iMac

92.28 92.00 99.72 80.37

Sony-LG 77.06 96.22 100.00 91.13
Sony-
Samsung

63.28 94.17 99.89 81.67

Average 80.16 93.89 99.35 93.71

Table 3. Accuracy of embedded message recovery and label-
ing with additive intensity κ = +5 on [0,255] and captured with
45◦oblique perspective.

Accuracy
(%)

Naive
Threshold

Two-
step

OORC Hidden
Ratex

Canon-
iMac

95.28 96.61 99.00 95.74

Canon-
LG

97.11 99.72 97.17 97.59

Canon-
Samsung

97.39 97.33 98.94 94.35

Nikon-
iMac

98.39 99.17 99.22 96.11

Nikon-LG 99.83 100.00 99.83 97.31
Nikon-
Samsung

96.33 97.44 98.56 95.74

Sony-
iMac

97.72 97.00 99.94 81.67

Sony-LG 99.39 100.00 100.00 90.74
Sony-
Samsung

92.50 92.33 98.06 90.28

Average 97.10 97.73 98.97 93.28

Table 4. Accuracy of embedded message recovery and label-
ing with additive intensity κ = +5 on [0,255] and captured at
0◦frontal view. The problem is relatively straightforward for this
case with frontal views and high κ value (5). The benefits of radio-
metric calibration are much more apparent in Tables 1, 2,3, where
errors are larger when the κ value is decreased, and for oblique
views.
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