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ABSTRACT

Modern photo editing software enables increasingly realis-
tic image manipulations, through splicing, region copy and
paste, and content-aware fill. One potential flaw in manip-
ulations is generating realistic object reflections, such as in
bodies of water or glass surfaces. Image reflections involve
complicated interactions between lighting, surface materials,
and geometry, and they can be very hard to fake. Any in-
consistency between the directly observed scene and its cor-
responding reflection is a strong indication of content manip-
ulation. We propose a novel, physical-level image forensic
approach to verify the integrity of reflections through identi-
fying mismatches between objects and their reflections. The
proposed algorithm consists of reflection-invariant feature de-
tection and matching, geometric transform estimation, and ro-
bust change detection between a scene region and its warped
reflection region. This approach complements the large body
of digital-level forensic methods, with the advantage of be-
ing robust to digital-level image transformations such as com-
pression, blurring, and added noise. Experimental results on
authentic and manipulated images demonstrate its efficacy.

1. INTRODUCTION

In an increasingly visual world, the need for image forensics
is paramount. Modern photo editing software has allowed
artists to make phenomenal, realistic works combining multi-
ple images, but the accessibility of these tools has made mali-
cious photo manipulations more common and convincing too.
As realistic, doctored photos have become ubiquitous, public
trust in the authenticity of photographs has been eroded.

To address this problem, a number of image forensic
techniques have been developed over the years to ensure me-
dia integrity [1]. The earlier works focused on digital-level
authentication involving image metadata, quantization ta-
ble, tone scale response, and photo response non-uniformity
(PRNU). For a JPEG photograph, one might perform DCT-
AC Analysis, Compression Level Analysis (CLA), Color
Filter Array (CFA) analysis, Error-level analysis, examine
blocking artifacts, high pass filtering, PRNU analysis, or
clone detection. However, the majority of these forensic
methods can be defeated by simple image operations or re-
imaging attacks, such as image capture from projection or

Fig. 1: Left: a dinosaur piñata is matched with its reflection
on an outdoor mirror. Right: reflection tampering of editing
out the dinosaur reflection has increased errors and removed
many of the interest points clustered on the dinosaur’s body.

printing, analog to/from digital conversion, double compres-
sion and added noise. Consequently, physical-level forensic
methods have been explored to verify the consistency be-
tween scene elements, reflection, lighting, and shadows [2, 3].
These methods are robust or invariant to digital-level opera-
tions as they involve physical properties of the imaged scene.
O’Brien and Farid proposed a human-assisted algorithm for
exposing photo manipulation using geometric constraint of
reflective vanishing points [2].

Reflections have been studied extensively in image analy-
sis. One primary application is to detect and remove specular
highlights using physical models of reflectance [4]. Polarized
images were also used to separate reflection components of
scenes behind glass [5, 6], taking advantage of the fact that
materials like glass will partially polarize light. In addition,
reflectance properties have been successfully used for mate-
rial recognition [7], which could be applicable to matching
reflected content by modeling appearance changes from vari-
ation in viewpoint and lighting.

In this paper, we study photo integrity using environmen-
tal reflections, which contain useful information about the ge-
ometry and photometry of objects in a scene. As an example
shown in Fig. 1, reliable feature points can be detected and
matched on the original image to the left. However, removal
of the dinosaur reflection to the right has removed many in-
terest points on the object and increased matching errors. Er-
satz reflective geometry might fool the human eye, but im-
age integrity can be verified or questioned if reflective corre-
spondence is known. Because scene reflection involves com-



Fig. 2: The work flow of reflection authentication.

plicated interaction between reflecting surface, lighting, and
geometry, it is very hard to manipulate an image while main-
taining consistent reflection. Therefore the inconsistency be-
tween object and its reflection is a good indicator of image
tampering, usually stronger than the digital-level forensic in-
dicators. On the other hand, it is challenging to have an end-
to-end fully automated solution. Many prior works require
human input to manually annotate reflective correspondences,
a tedious and error-prone process.

We propose an algorithm for automatically finding point
correspondences between scene objects and their reflections,
estimating the geometric transform between scene and reflec-
tive regions, and detecting inconsistent reflections due to ob-
ject insertion and removal. The law of reflection is enforced in
reflection-invariant feature matching. In addition, the robust
change detection module employs a number of heuristics, in-
cluding the reflected region being compressed in color and
contrast and appearing blurry. Rather than requiring match-
ing key points to be explicitly hand-selected by a user, our
method requires only a mask of the reflecting region within
a single, non-polarized photograph. The proposed algorithm
is applicable to photographs that contain specular reflections
on planar surfaces, with part of the scene being observed both
directly and indirectly through reflection. Planar reflections
often appear in nature (e.g. still water surfaces) and are es-
pecially common in man-man environments (e.g. mirrors and
windows).

The rest of the paper is organized as following. Section 2
outlines the processing pipeline for reflection integrity anal-
ysis. Section 3 presents details of each processing module.
Experimental results are demonstrated in Section 4, and the
paper is concluded in Section 5.

2. REFLECTION INTEGRITY

We first list a few observations to assist our algorithm design.

• The law of reflection. The angle of incidence equals
to the angle of reflection, and the incident, normal, and
reflected directions are coplanar.

• Compression of color. Object reflection appears less
colorful than the its direct observation. The color may
have shifted. However, the area of color region on color
gamut does not increase in reflection.

Fig. 3: Reflection-invariant feature matching and geometric
transform estimation.

• Compression of sharpness. The reflecting surface
serves as a low-pass filter and the reflection usually
appears blurrier than directly observed scene.

• Compression of contrast. Due to directional reflection,
refraction and surface abortion, only part of the light
reaches the sensor after reflection, resulting in lower
contrast.

The proposed reflection integrity authentication method
follows the processing steps in Fig. 2. The pipeline takes a
single image as input. The reflecting surface detection module
determines if the image has reflection, and localizes the region
of interest. Saliency analysis can further narrow down the
sub-region of interest within reflection. Next interest points
are identified in scene region (SR) and reflected region (RR).
Reflection-invariant feature descriptors are extracted from the
feature points and matched across scene and reflection re-
gions. Random sample consensus (RANSAC) is employed to
maximize the number of matched features, and the geometric
transform and reflection axis are estimated. Upon fixing the
geometric transform, the reflection region is warped to the
scene region, and robust change detection is carried out. Out-
liers and anomalies are automatically detected. An integrity
score is computed indicating the likelihood of manipulation,
and the manipulated region is segmented. The law of reflec-
tion is explicitly enforced in feature matching, and compres-
sion of color, contrast and sharpness in robust change detec-
tion. See Fig. 5 for demonstration of these processing steps.

The first module to detect reflecting surface, highlighted
in red in Fig. 2, is out of the scope of this paper, and we man-
ually draw a reflection mask, such as Fig. 5(b). The step can
be automated by semantic segmentation [8] or water detection
[9]. As shown in Fig. 4, variations in the reflection mask have
little effect on the resulting matches. The rest of the pipeline
(green) is fully automatic and will be presented in Section 3.

3. PROCESSING MODULES

We first present the algorithm to match the reflected and di-
rectly viewed key points within a single image, following the
steps in Fig. 3. For a given photograph P , we consider the
reflective pixels Pr and the directly imaged pixels Pd. Pr and
Pd are computed using a binary mask Mreflection of the reflect-
ing plane R, where Mreflection(i, j) = 1 if P (i, j) ∈ R,
or Mreflection(i, j) = 0 otherwise. Applying Mreflection to P
yields the regions of interest, Pr = Mreflection ∧ P , and Pd =



¬(Mreflection ∧ P ). In other words, Pr and Pd are mutually
exclusive, Pr ∪ Pd = P , and Pr ∩ Pd = 0.

To better facilitate matching between the two regions, Pr

and Pd, we apply the Contrast Limited Adaptive Histogram
Equalization (CLAHE) algorithm to both image regions [10,
11], P ′r = CLAHE(Pr), and P ′d = CLAHE(Pd).

It is well known many popular feature descriptors, such
as SIFT [12] and SURF, are not invariant to affine transforms
like reflection. Instead we detect interest point and match the
reflection-invariant feature descriptors using [13]. Other al-
ternatives [14, 15, 16, 17] can be used as well. The feature
descriptors for both P ′r and P ′d are

Sr =
{
Sr
0 , ..., S

r
m−1

}
= Descriptors(P ′r),

Sd =
{
Sd
0 , ..., S

d
n−1
}
= Descriptors(P ′d),

(1)

where m,n represent the number of computed features in P ′r
and P ′d, respectively. Once we have Sr and Sd, our feature-
point representations for each image region, we find the cor-
respondences using FLANN (Fast Library of Approximate
Nearest Neighbors) [18]. We denote the container F and the
total number of matches k such that

Fi =
{
Sr′

i , Sd′

i

}
, where 0 ≤ i ≤ k ≤ min(m,n), (2)

and Sr′

i , Sd′

i are the ith feature points matched using FLANN.
For each entry Fi, we calculate the slope Li of the line

segments connecting Sr′

i and Sd′

i . A histogram of all slopes
is computed. The number of bins, b, is calculated such that:

Sturges = log2k + 1

FD =
IQR(L)

3
√
k

b = max(Sturges,FD),

(3)

where IQR(L) is interquartile range of our slopes L.
Within our histogram, we find the most frequent bin, b∗.

Only the interest-point pairs from F in b∗ are kept, all others
are excluded. We denote this new set of pairs F ∗. RANSAC
is used to further filter the matched interest-points. The re-
sulting set of matched interest-points is denoted:

F ∗∗ =
{
Sr∗∗, Sd∗∗} . (4)

Given the matched interest points between the scene re-
gion and the reflection region, a geometric transform of ho-
mography is estimated. We compute the homography H be-
tween Sr∗∗ and Sd∗∗ from four or more matching points [19].
The estimated transform can then be used to warp the reflec-
tion region, and bring the directly-imaged and reflection re-
gions into spatial alignment.

The next step is to locate the outliers and anomalies
through robust change detection. Change detection has been
long studied. See [20] and references therein for details.
However, the images used in the literature tend to be captured

(a)

(b)

(c)

Fig. 4: The reflection matches (right) are robust to perturba-
tions in the reflection mask (left), including the (a) oversized,
(b) ground-truth, and (c) undersized reflection masks.

from real cameras. In our case, the scene region is from a
real optical camera, and the warped reflection region is from
a virtual camera. Various image metrics or similarity mea-
sures, such as SSD, MSE, histogram intersection, and disjoint
information [21], can be used. The task-specific constraints,
such as compression of color, contrast, and sharpness, are
used to reduce false detection. To this end, a difference map
is calculated from the scene region and the warped reflection
region. At each pixel location, a pair of surrounding patches
(e.g. 17x17 pixels) are extracted. The standard deviation
of the patches are computed. The standard deviation on the
reflection patch is subtracted from that on the scene patch,
and negative values are truncated to zero. Morphological op-
erations are carried out on the difference map to remove the
isolated noise. After thresholding, regions with significant
change are identified and an indication score between 0 and 1
is derived from the maximal difference in the region.

4. EXPERIMENTAL RESULTS

In the following, we present the experimental results on au-
thentic and manipulated images with mirror-like reflections.

In Fig. 1, we have an outdoor scene where an object is
reflected off the mirrored column of a building. The dinosaur
piñata is directly imaged from a very different angle than the
reflection. This makes correspondence difficult because few
feature points are visible by both viewing angles. The mir-
ror in the scene also introduces some color and intensity bias,
making the reflection pixels darker and slightly greener than
the directly viewed pixels. Although there are some mis-
matches corresponding to similarly textured ground bricks
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Fig. 5: Photo reflection integrity analysis. (a) Fake images with object insertion of airplane (top) and UFO (bottom). (b)
The reflecting surface masks (black regions). (c) Reflection invariant feature matching. (d) The warped reflecting region after
applying the estimated geometric transform using correspondence in (c). (e) Robust change detection between (b) and (d).

and mirror frame, this result demonstrates successful reflec-
tion matching in a scene with outdoor lighting and where
relatively few pixels of the reflection correspond to directly
viewed pixels. In the right image, the dinosaur reflection is
edited out. The interest-points are no longer clustered on the
missing subject. The tampered image has increased matching
errors. This is due to a sparsity of similar pixels in the regions,
and challenges associated by ambiguous backgrounds.

The proposed feature matching method is robust to the
choice of reflection mask. As shown in Fig. 4, even with
variable-sized reflection masks, the change in results are
minimal. Despite uncontrolled lighting, imperfect reflectors,
repeating textures, and occlusions, objects are successfully
matched with the proposed method. Our method is not de-
pendent on “perfect results” from an earlier step detecting the
reflecting surface plane.

Next we present photo reflection integrity analysis in
Fig. 5. Both scene and reflection regions are observable
in Fig. 5(a). Note the water in Fig. 5I(a) is actually semi-
transparent. The two images are manipulated. An airplane
and an UFO are inserted in the sky. However, their reflections
are missing. Fig. 5(b) shows the reflection masks, which
are drawn manually. Reflection-invariant feature points are
detected and matched in Fig. 5(c), as red points and lines.
A homography is estimated from the matched points, and
the reflection region is warped to the scene region, as shown
in Fig. 5(d). Compared to the scene region in Fig. 5(b),
the warped reflection regions appear blurrier. There is obvi-
ous color shift and contrast reduction. After robust change
detection between (b) and (d), the outliers and anomalies
are highlighted in Fig. 5(e), which correspond to the image

manipulations.
There is room to improve the robustness of feature match-

ing and change detection. The points in reflection undergo
low-pass filtering and geometric warping. In addition, occlu-
sion is prevalent due to the change of viewing angles. Re-
liable point matching between direct-scene and reflection is
still challenging. The reflection surface may have additional
content (e.g. stains), and different geometry and photometric
properties. Distinguishing manipulation changes versus inci-
dental appearance changes remains a significant challenge.

5. CONCLUSION

We have presented an algorithm to assess photo reflection in-
tegrity and expose photo manipulation through reflection cor-
respondence. Feature points are matched between scene re-
gion and reflected region. The matching method is robust to
general reflection transform and the choice of the reflection
mask. Robust change detection is carried out to locate out-
liers and anomalies, thus revealing inconsistent reflection and
photo manipulation. The proposed physical-level forensic in-
dicator complements the widely studied digital-level forensic
methods. In the future, we plan to look into automatic re-
flecting surface detection, and extend the mirror-like planar
reflection to other challenging cases.
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