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ABSTRACT
Traditionally, electronic displays have been used only to dis-
play information to human users. Recently, however, new re-
search has emerged that shows how cameras and electronic
displays can be used to communicate. A major focus of
this research has been methods for cameras and displays to
deliver and receive messages that are hidden from human
viewers. Previous computer vision research has shown how
the mismatch in human-vision sensitivity and camera sen-
sitivity functions can be exploited for hidden message com-
munication [1]. In this work, we will compare how different
clustering algorithms effect camera recovery accuracy.

1. INTRODUCTION
Metamers are distinct colors that look the same to hu-

mans, because they have the same 3-channel mapping in the
human vision system. Differential Metamers are pairs
of different colors that humans cannot distinguish between
when shown in succession, but cameras can. The goal is to
find a mapping of differential metamers for every possible
(8-bit) RGB value. These pairs of differential metamers are
6-dimensional points consisting of

{Rbase, Gbase, Bbase, Rdelta, Gdelta, Bdelta}.

If we have a set a differential metamers for every RGB
triple, we can embed invisible but camera-readable secret
messages into any arbitrary image or video. These mes-
sages have many diverse applications such as a directed al-
ternative to near-field communication (NFC) networks, in-
teraction with televisions and electronic billboards, indoor
localization, and dynamic but invisible fiducial tags. These
hidden messages would take advantage of existing devices
and infrastructure, and would require no specialized hard-
ware. This process is illustrated in Figure 1.

The nonlinearities in display emittance, camera sensitiv-
ity, and our own human color sensitivity make direct com-
putation of these differential metamers difficult. Instead, a
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Figure 1: Differential Metamers are color pairs that are op-
timized to be hidden from human vision, but sensitive to
a camera. By modulating small, per-pixel changes in an
image, differential metamers can be used to embed hidden
messages. [1]

data-driven approach is used. But training data is difficult
to collect. It requires that both the camera and human labels
must be assigned. The camera sensitivity tests are trivial to
automate. But the human sensitivity tests cannot be auto-
mated and take lots of time. For this same reason, results
are also difficult to label.

The overall goal of this work is, given an image ibase,
create embed image iembedded with per-pixel change d, so:
iembedded = ibase+d. The objective here is to choose d which
satisfies the following four axioms:

1. requires no specialized hardware;

2. remains invisible to humans;

3. can be robustly camera-decoded; and

4. satisfies the previous axioms regardless of base-image
content.

Previously, there has been no evaluation of the effect of
different clustering algorithms in the differential metamers
algorithm. In this work, we demonstrate how different clus-
tering algorithms effects the camera-decoded accuracy of dif-



ferential metamers. Specifically, this work will test imple-
mentations of:

• k-Means

• k-Medoids

• Gaussian Mixture Models (GMMs)

• Hierarchical clustering

• Spectral clustering

and measure camera-recovery error as well as run time.

2. RELATED WORK

2.1 Camera-Display Communication
Camera-display messaging is an innovative research area

growing in popularity, which embeds a time-varying mes-
sage invisible for human. Recent work mainly adopt two
approaches: 1) high speed light modulation [2, 3], and 2) in-
tensity modulation [4, 5]. Kaleido [2] was developed to pre-
vent videotaping by adding noise to machine-readable chan-
nel and retaining the quality of the human-readable channel.
The work is based on the concept of “persistence of human
vision” that human perceives a blended color when alternat-
ing colors are shown at a high frequency, while a camera
sees varying colors due to rolling-shutter mechanism and
synchronization. A similar approach used for messaging,
VRCodes [3] embeds only 1-bit message per frame. Those
methods rely on high speed light modulation, and therefore
a high speed display is required. Differently, we are seek-
ing a generalized wide bandwidth hidden messaging method
without specialized hardware.

Visual MIMO [4] and HiLight [5] employ intensity mod-
ulation for message embedding, in which a large intensity
change is required for accurate message recovery. However,
human vision is generally very sensitive to intensity changes
between consequent frames. Even small magnitude inten-
sity modulation is likely to cause flicker and discomfort to
humans. Small color gradients were first used to embed wa-
termarks that were difficult to see when far away, but visible
up close [6]. Some initial experimentation shows human eye
and camera have different spectral color sensitivity. Our
method modulates color for messaging, such that it appears
unnoticed for human observers but can be distinguished by
cameras. A new embedding method we propose to explore
texture modulation, which can avoid local intensity change
caused by different messages (0,1) embedded into nearby
blocks. This approach can preserve higher quality of human
observation channel than modulating individual pixels.

Use of Clustering Algorithms
In this paper, different clustering algorithms will be evalu-
ated on the Differential Metamers algorithm. The Differen-
tial Metamers approach to camera-display communication
uses trained pairs of colors suitable for embedding to gener-
ate new color pairs [1]. Similar to Visual MIMO, messages
spatially varying 2D barcodes, and these messages are ap-
plied to base images with small modulations.

In the Differential Metamers algorithm, k-Medoids is used
to initially cluster the training data. However, other clus-
tering algorithms are never evaluated or explored. In this

Figure 2: MacAdam ellipses for the CIE xy 1931 colorspace
[7, 8]. The area within these scaled-up ellipses represent
metamers, or colors which cannot be distinguished.

work, we will test how the choice of clustering algorithm
effects the camera-recoverability of the result.

2.2 Separating Ellipsoids
The use of separating ellipsoids in color space is moti-

vated by two main factors. First, the problem of finding a
separating ellipsoid is a convex optimization problem and
not affected by local minima. Second, human vision re-
search has showed the utility of ellipsoidal surface fitting
for representing color difference thresholds. As early as the
1940’s, human vision studies identified and quantified el-
lipsoidal representations for the problem of understanding
human sensitivity to small color differences [9, 7] as illus-
trated in Figure 2. This ellipsoidal representation was con-
firmed in numerous studies in early vision literature [10, 11,
12]. Parametric surfaces were used to find discrimination
contours and the fitting typically used detection thresholds
[13, 14] in order to get just-noticeable-difference JND con-
tours [15]. Our framework greatly simplifies this process be-
cause no threshold values are measured. Instead, a separat-
ing ellipsoid finds a discrimination boundary between color
pairs that are differential metamers and those that are not.
Metamer sets [16] are convex hulls, which ellipsoids are well-
suited to fit. By extension, we have adopted discriminating
ellipsoids to characterize the space of differential metamers.

Using small, selective variations in color to embed infor-
mation is not new. Rudaz and Hersch adopted small color
gradient to watermark spatially varying “microstructures”
into images [6]. The objective here was to use color match-
ing to embed watermarks that were difficult to see when far
away, but visible up close. On the other hand, our goal is to
find pairs of colors where no distinction can be made when
viewed sequentially by humans, but the difference can be



robustly detected by a camera.

3. BACKGROUND INFORMATION

Figure 3: Six-dimensional differential metamers are pro-
jected down to Lab space. These differential metamers
are generated by sampling within the separating ellipsoids.
Here, the entire Lab space is collectively covered by k = 30
ellipsoids.

The space of all possible color pairs is too large to evalu-
ate directly. Even for low-resolution 8-bit RGB values, there
are 2566 possible combinations. Instead, we employ a data-
driven approach. Given a subset of “good” color pairs, find
a superset of “good” color pairs using unsupervised and su-
pervised machine learning techniques. An example superset
of Differential Metamers is shown in Figure 3.

Training points labeled as “good” or “bad”. These points
are in six-dimensional space representing (i,i+ δĉ). “Good”
points are defined as ones whose color embedding is invisible
to humans, but recoverable by camera with BER (bit error
rate) ≤ 5%. All other point pairs are negative training data.

A single ellipsoid does not reasonably represent the set of
all differential metamers, because color shift is dependent
on base color. Therefore we define a separating ellipsoid for
each cluster of training data.

The algorithm for finding differential metamers has three
main components:

1. Cluster positive training examples into k clusters.

2. For each cluster, find the optimal ellipsoid that sepa-
rates positive and negative data. An example of this
process is shown in Figure 4.

3. Sample within the union of all ellipsoids to find new
differential metamers.

To increase the performance of this approach, new dif-
ferential metamers sampled from within the ellipsoids are
labeled and used to retrain the model. This process can be
applied to any color space, such as RGB or CIE Lab.

4. PROPOSED APPROACH
This paper compares the effectiveness of the following

clustering algorithms with respect to message recovery:

Figure 4: This 6-dimensional separating ellipsoid and sub-
set of differential metamers has been projected down to 3-
dimensional space. Each 6-dimensional ellipsoid is trained to
contain base colors and respective color shifts that cameras
can easily detect, but are invisible to humans. Here, con-
nected nodes represent pairs of base colors and color shifts
sampled from within the ellipsoid.

• k-Means

• k-Medoids

• Gaussian Mixture Models (GMMs)

• Hierarchical clustering

• Spectral clustering.

In this section, the specific implementation of each clus-
tering algorithm is discussed.

4.1 k-Means
The k-means++ algorithm was tested [17]. With k-means++,

the first cluster center is chosen uniformly at random from
the input set. Each subsequent cluster center is chosen ran-
domly from the remaining data points with probability pro-
portional to its distance from the point’s closest existing
cluster center. A limit of 100 iterations are in place. And
this approach is repeated 10 times. The replication with the
lowest distortion is selected.

4.2 k-Medoids
This implementation of k-medoids is based on the PAM

(partitioning around medoids) algorithm [18]. Seed selec-
tion and the swap phase are based on ”A simple and fast
algorithm for K-medoids clustering.” from Park, Hae-Sang,
and Chi-Hyuck Jun. [19]. Again, a limit of 100 iterations
are in place. And again, this approach is repeated 10 times.
The replication with the lowest distortion is selected.

4.3 Gaussian Mixture Models (GMMs)
This implementation of GMMs allows for non-axis-aligned

Gaussian distributions. Therefore, these are full Σ Gaussian
Mixture Models. The centroids are initiated randomly. The
covariance bound is 10−6. Each data point is assigned to



the cluster with the largest posterior. This approach is re-
peated 10 times. The replication with the lowest distortion
is selected.

4.4 Hierarchical clustering
The implementation of Hierarchical clustering evaluated

in this paper uses average distance linkage (aka “group av-
erage”). The linkage is cut such that there were a maximum
of k clusters.

4.5 Spectral clustering
Initially, k-Means is used to organize the eigenvectors. In-

cidently, this was the same implementation of k-Means dis-
cuss earlier in this section.In this implementation of Spectral
clustering, we choose Σ = 5. This approach utilizes an un-
normalized Laplacian matrix.

5. EXPERIMENTS

5.1 Experimental Setup

Figure 5: This is the kernel density estimate (KDE) of the
training data labeled “good.” The first row represents the
base colors in CIE Lab space, and the bottom row represents
the color deltas. The KDE bandwidth of the top row is
4, and the bottom row is 0.025. The KDE reveals that
the base colors and the deltas do not come from the same
distributions.

For the Differential Metamers generation algorithms was
run using each of the clustering algorithms described in the
previous section. The clustering and training algorithm is
applied to a dataset of 2480 labeled pairs of colors. Within
this set there are 1558 “bad” pairs and 922 “good” pairs.
Again, “goodness” is defined as pairs of colors where humans
can detect no changes, but the camera can recover an em-
bedded message with low error. The dataset can be found at
ericwengrowski.com/research/labeled colors.mat. The Ker-
nel Density estimates of the“good”training data can be seen
in Figure 5.

After the ellipsoids are trained and new differential metamers
are generated, we measure the accuracy by which a camera
is able to recover the embedded message. Using the newly
sampled differential metamers, the 14 images shown in Ta-
ble 1 each have a known message embedded into them. The
camera, positioned 1 meter away from the display at a fixed
viewing angle, first captures the displayed original image,

and then captures the displayed image with a color modu-
lated message. This procedure happens twice for each clus-
tering algorithm under two different illumination conditions.
Once where the camera has fixed high-exposure settings, and
once again with fixed low-exposure settings.

5.2 Assumptions

Selection of k.
By empirical evaluation, the number of clusters k = 30

across all clustering algorithms. The performance of each
clustering algorithm would likely be improved if an optimal
k was selected for each. However, for simplification of exper-
iments, k = 30 because it wasa value that had given good
results under a host of experimental conditions.

Camera-Display Scalability.
Generally, individual cameras and displays have unique

sensitivity and emittance functions. So the differential metamers
trained on one camera-display pair, may produce suboptimal
results on another pair. Additionally, camera-display trans-
fer functions may be influenced by white balance, aperture,
gain, shutter speed, individual sensor properties.

5.3 Results

Clustering
Algorithm

Mean
Low
Light
Error

Low-
Light
STD

Mean
High
Light
Error

High-
Light
STD

Run
time
(sec)

k-Means 30.41% 10.65% 24.16% 11.08% 0.0435
k-Medoids 28.97% 10.89% 22.97% 9.92% 0.5813
Gaussian
Mixture
Models

27.33% 10.83% 22.72% 11.05% 0.0978

Hierarchical
clustering

29.37% 11.42% 22.97% 11.64% 0.1299

Spectral
clustering

34.52% 11.58% 24.70% 9.91% 0.1387

Figure 6: Camera recovery error for various clustering meth-
ods (lower is better). Gaussian Mixture Models (GMMs)
produce results with the lowest average errors under both
illumination conditions. But this advantage is only slight.
The large standard deviations indicate that message recov-
ery is highly dependent on the original base image used for
embedding.

Under both illumination conditions, Gaussian Mixture Mod-
els produce embedding with lower recovery errors on aver-
age. But the margin of superiority is generally small. Re-
gardless of method used or illumination condition, the stan-
dard deviation hovered around 10% for all methods. This
suggests that the recovery error results are largely depen-
dent on the base image used. This result has been verified
empirically as well; certain images produce better embed-
ding results. The results are listed in more detail in Table 6.

The run time calculations took place on an Intel 6700K
processor with 7% overclock running Matlab 2015b. Al-
though GMMs, were the second fastest clustering algorithm,
their run time was more than double k-means. For small



Table 1: Set of 14 images used to evaluate camera recovery accuracy across several clustering algorithms.

training sets like the one use in this paper, this is negligible.
But for exponentially larger sets, this may have a serious
practical impact on performance.

6. CONCLUSION AND FUTURE WORK
We show that Gaussian Mixture Models outperform other

clustering methods when generating differential metamers.
Intuitively, GMM clusters are ellipsoidal and work nicely
with the separating ellipsoids that are found in a later step.
This makes sense since each ellipsoidal GMM cluster will
correspond to a single separating ellipsoid.

Since the margin of success was very small, and the stan-
dard deviation was large for all evaluated clustering meth-
ods, we conclude that the results will mostly depend on the
images used for embedding.

However, we can expect our results to change as the clas-
sification method changes. Separating ellipsoids are one
way of classifying “good” and “bad” color pairs, but other
methods can be applied such as deep learning techniques,
and kernel SVM. As separating ellipsoids are replaced with
new supervised learning techniques, it will be important to
reevaluate the effect that each clustering method has on the
results. This is left for future work.

This paper does not consider the effects that various clus-
tering algorithms have on human visual perception of em-
bedding. A major component of differential metamers and
camera-display messaging in general is hiding images from
human perception without flicker or other visual discom-
forts. In order to truly conclude which clustering algorithms
best satisfies the aforementioned axioms of camera-display
messaging, a user study needs to be performed to measure
human perception.
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