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Abstract

We exploit human color metamers to send light-
modulated messages decipherable by cameras, but camou-
flaged to human vision. These time-varying messages are
concealed in ordinary images and videos. Unlike previous
methods which rely on visually obtrusive intensity modula-
tion, embedding with color reduces visible artifacts. The
mismatch in human and camera spectral sensitivity creates
a unique opportunity for hidden messaging. Each color
pixel in an electronic display image is modified by shifting
the base color along a particular color gradient. The chal-
lenge is to find the set of color gradients that maximizes
camera response and minimizes human response. Our ap-
proach does not require a priori measurement of these sen-
sitivity curves. We learn an ellipsoidal partitioning of the
6-dimensional space of base colors and color gradients.
This partitioning creates metamer sets defined by the base
color of each display pixel and the corresponding color gra-
dient for message encoding. We sample from the learned
metamer sets to find optimal color steps for arbitrary base
colors. Ordinary displays and cameras are used, so there
is no need for high speed cameras or displays. Our pri-
mary contribution is a method to map pixels in an arbitrary
image to metamer pairs for steganographic camera-display
messaging.

1. Introduction
Electronic displays, such as LCD monitors, are typi-

cally used only for human visual observation. Research in
the relatively new field of camera-display communication
has introduced a dual channel: a machine-readable com-
munications channel operating in parallel with the human-
observable display. Time-varying messages can be embed-
ded in the on-screen images, but this task has significant
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Figure 1: Differential Metamers are color pairs that are op-
timized to be identical under human vision, but distinguish-
able by a camera. By modulating small per-pixel changes
within an image sequence, differential metamers can be
used to embed hidden messages. The embedded message
is blended to reduce the spatial visibility without disturbing
camera recovery.

challenges. The modulated signal is an illumination field
propagating in free-space, so prior methods of watermark-
ing for digital images are not directly applicable. The illu-
mination field emitted by the display and captured by the
camera depends on the parameters of the radiometric trans-
fer function and sensitivity curves of both the display and
camera. This camera-display transfer function makes mes-
sage recovery challenging, but it also presents an opportu-
nity for message embedding that is tuned to typical transfer
functions.

A common method for camera-display messaging relies
on intensity modulation either for directly embedding bits
or for embedding transformation coefficients [1, 2]. Human



vision is generally very sensitive to intensity step edges,
even when the step size is small. For simple messaging,
the display image can be modified by adding a message im-
age where “1” bit values are encoded in a block by a small
intensity step and “0” bit values are encoded by zero inten-
sity step. The message frame is added in alternative tempo-
ral frames so that sequential frame subtraction can be used
to decode the message. This method assumes that the dis-
play image is constant over time intervals. Accurate mes-
sage recovery is challenging because small intensity steps
are needed to hide the message, but large intensity steps
are needed for a low-noise signal that can be accurately de-
coded by the camera.

Another approach to making the message imperceptible
is to use high speed light modulation so that the flicker fu-
sion effect of human vision can temporally blur the inten-
sity variation [3]. High speed displays are commercially
available, but the higher cost is prohibitive for ubiquity in
electronic signage and mobile display applications.

Our approach uses color modulation that exploits the
differences in human color sensitivity versus camera color
sensitivity. This allows us to accurately send and receive
camouflaged messages without specialized hardware. In a
displayed image i, let the pixel coordinate be denoted by
w ∈ R2. Each image pixel i(w) has 3 color components,
i(w) ∈ R3. A color message image m is added to i such
that our steganographically embedded image e = i + m,
and each pixel of the embedded message is given by e(w) =
i(w) +m(w). For “1” bits, the message m is a color shift
added to i. The goal is to find the best color shift δ ∈ R3.
Let δ̂ denoted the unit direction in color space, and ‖δ‖2 is
the magnitude of the step-size. We seek a step δ to create a
differential metamer (i(w), i(w) + δ) such that i(w) + δ is
perceived to be the same color as i(w) by a human observer
but is camera-captured as a distinguishable color.

Large sets of differential metamers can be generated
given a small training set. Our approach uses a 6-
dimensional quadratic binary classifier, solved in a convex
optimization problem. Using training data with positive and
negative examples, the algorithm determines a set of sep-
arating ellipsoids in 6-dimensional space. The interior of
these ellipsoids contain 6-dimensional points g where the
first three components corresponds to a particular base color
and the last three components provide the corresponding δ̂
used for messaging. The interior of these 6-dimensional el-
lipsoids define approximate metamer sets that sufficiently
provide message hiding and recovery.

Differential Metamers

Traditionally, metamers are colors that have different
spectral power distributions, but appear identical to ob-
servers when integrated over the 3 cones sensitivities in the
human eye (see Figure 2). We introduce the term differen-

tial metamers to define pairs of color values programmed
for sequential display that result in minimal visible change
for the human observer but are distinguishable colors when
captured by a camera. This process is illustrated in Fig-
ure 1. Many differential metamers exist even among 8-bit
color values, but finding the color values that yield both low
human sensitivity and high camera sensitivity is difficult be-
cause 2566 (over 2×1014) colors would need to be tested for
both camera-display sensitivity and human-display sensitiv-
ity. Specific camera sensitivity curves combined with hu-
man vision parameters are not be enough to model the dif-
ferential metamer space. Display parameters indicating the
spectrum of light emission for each programmed color vec-
tor and the dependence on radiometric observation param-
eters are also be needed to determine an analytical model.
Given the variations involved, we choose a data driven ap-
proach instead. We show that this approach is straight-
forward and effective. We generate samples in 6D space
indicating base colors and color gradients for messaging.
By observation of the resulting messaging visibility (human
and camera), these sample points are labeled as “good” or
“bad” for messaging. By sampling 2480 points, we train
a set of ellipsoidal binary classifiers that predict successful
differential metamers where the base color values i fill the
displayable color space. We perform the metamer set esti-
mation in both RGB and CIE Lab color spaces.

2. Background and Related Work
Metamers and Separating Ellipsoids Our approach to
finding separating ellipsoids in color space is motivated by
two main factors. First, the problem of fitting a separating
ellipsoid to labeled data is a convex optimization problem
[6] and therefore is not affected by local minima. Second,
human vision research has showed the utility of ellipsoidal
surface fitting for representing color difference thresholds.
As early as the 1940’s, human vision studies identified and
quantified ellipsoidal representations for the problem of un-
derstanding human sensitivity to small color differences
[7, 4] as illustrated in Figure 2. This ellipsoidal represen-
tation has been confirmed in numerous studies in early vi-
sion literature [8, 9, 10]. Parametric surfaces were used to
find discriminating contours. The fitting typically used de-
tection thresholds [11, 12] in order to get just-noticeable-
difference (JND) contours [13]. Our framework greatly
simplifies this process because no threshold values are mea-
sured. Metamer sets [14] are convex hulls, which ellipsoids
are well-suited to fit. By extension, we have adopted dis-
criminating ellipsoids to characterize the space of differen-
tial metamers. In prior work that used color to embed infor-
mation [15] color gradients are used to watermark spatially
varying microstructures into images. The objective in this
work is to embed watermarks that were difficult to see from
a distance, but visible up close. This is different from our



Figure 2: MacAdam ellipses for the CIE xy 1931 colorspace
[4, 5]. The area within these scaled-up ellipses represent
metamers, or colors which cannot be distinguished.

goal of finding pairs of colors where no distinction can be
made when viewed sequentially by humans, but the differ-
ence can be robustly detected by a camera.

Camera-Display Communication Electronic displays
such as televisions, computer monitors, and projectors are
traditionally used to display images, videos, and text - all
human readable scenes. These devices can also display
camera-readable images such as QR-codes [1, 16, 17, 18,
19, 20, 21, 22, 2, 23, 24, 25, 26, 27]. Within the past 5
years, extensive work has been done to expand the capabili-
ties of camera display messaging by increasing throughput.

PixNet introduced OFDM transmission algorithms to
address the unique characteristics of the camera-display
link, including perspective distortion, blur, and sensitivity
to ambient light [22]. While PixNet offer impressive data
throughput, it can only display machine-readable code and
supports no hybrid approach. Strata introduced distance-
scalable coding schemes [16], preferable in a mobile ap-
plication, but also cannot display both human-readable and
camera readable images at the same time. Both of the afore-
mentioned techniques encode bit values with intensity. CO-
BRA introduced a 2D color code [17], but also could only
display machine readable code.

Both Visual MIMO [1, 19, 20, 24, 25, 26, 27] and Hi-

Light [21] use intensity modulation in human-readable im-
ages to embed a second machine-readable channel. How-
ever, it is well known that human vision is extremely sen-
sitive to temporal and spatial changes in intensity. It has
been shown that intensity changes, even with small magni-
tude are likely to cause flicker and discomfort to a human
observer. The amount of human visual obtrusion had not
been measured for either method.

Kaleido [28] and VRCodes [29] uses metamers to embed
data in alternating pixel values. These values, however, are
not “true” metamers in the sense that two static colors have
different physical properties such as wavelength, but appear
identical to human viewers. Instead, Kaleido and VRCodes
leverage flicker fusion to create temporally blended col-
ors hidden from human observers with high speed changes.
This approach is constrained by the need for specialized
high-speed displays and cameras. VRCodes also leverages
the rolling shutter camera typically found on mobile phones
to sample at frequencies above 60Hz. Unfortunately, this
limits VRCode throughput to only 1 bit per frame.

Kaleido [28] attempts to solve a different problem:
embedding noise with flicker fusion metamers to disrupt
piracy via camera recording of videos, while preserving
the human-visible channel. While similar in intuition to
the work presented in this paper, the goals are fundamen-
tally different. We embed camera-sensitive information in
this invisible channel, while Kaleido only embeds camera-
sensitive noise. And as stated before, Kaleido requires spe-
cialized high-speed displays, while our method requires no
specialized hardware.

LED arrays have used modulated light to communi-
cate [25, 30, 23]. Recently, LED-based communication
techniques have used color-shift keying for communication
[31]. Methods exist to make this color-shift keying imper-
ceptible to human observers [32], but these applications do
not require the imperceptible reproduction of high resolu-
tion images.

In this work, we take a data driven approach to gener-
ating differential metamers that have a small human sen-
sitivity gradient, but large camera sensitivity gradient. We
show that differential metamers are effective for stegano-
graphically embedding messages into high-quality images
on electronic displays.

3. Photographic Steganography System Design
Embedding Steganographic Messages The message
structure we employ is a 2D barcode grid, 16 blocks wide
and 9 blocks tall, containing 144 bits in total. The barcode
spans the entire display area. To reduce the visible artifacts
from sharp spatial gradients, the block pattern is blended.
The dimensions of the 2D barcode were chosen empiri-
cally. With smaller blocks, more bits can be transmitted
in a single image. But as spatial redundancy is reduced, bit



recovery errors will increase. Messages larger then 144 bits
can be constructed by stringing together sequential 144-bit
messages. For each block, a color shift keys a “1” bit. No
change to the base color keys a “0” bit.

We represent a differential metamer as the 6-dimensional
vector g separated into two components g = [gb gm]T

where gb is the base color in Lab space with gb ∈ R3 and
gm is the optimal color shift δ ∈ R3 in the same color space.

The core problem is finding the optimal δ for an arbi-
trary pixel base color. We denote G as a set of differential
metamers. For each pixel coordinate w, we compute the
minimum distance between i(w) and gb for every member
ofG. We refer to the g with the nearest gb as g∗, and g∗m pro-
vides the corresponding color shift for i(w). So if i(w) be-
longs to a block keyed with a “1” bit, then e(w) = i(w)+δ.

When the images i and e are rendered, they are trans-
formed by the display’s spectral emittance function D()
which is unknown. When the images are displayed in
a video sequence, odd frames display the original image
D(i), and even frames display the steganographically em-
bedded image D(e).

Recovering Steganographic Messages The two image
frames are sequentially imaged by the camera. The dis-
played images are affected by light travel in free space and
are transformed by the camera’s spectral sensitivity func-
tion. Denote these two unknown transformation functions
F () and C() respectively. The camera-captured images
C(F (D(i))) and C(F (D(e))) are subtracted from each
other. For each bit-block, an average difference greater than
some threshold corresponds to a “1”, and below that thresh-
old corresponds to a “0”. The threshold is calculated by re-
serving 4 of the 144 bits for calibration. The recovered mes-
sage was then compared to the known message to calculate
BER (bit error rate). BER is the percentage of misclassified
bits in each 144 bit message.

BER =
count( incorrectly classified bits )

count( all bits )
,

4. Learning New Differential Metamers
As stated in Section 1, differential metamers exist even

among 8-bit color values. But testing 2566 colors is expen-
sive and undesirable. Our approach for generating an ex-
panded gamut of differential metamers relies on a training
set of base colors i(w) and color shift gradients δ. Posi-
tive examples in this training set meet the criteria for em-
bedding: no visible flicker and accurate camera recovery.
Negative examples do not meet the criteria for embedding:
color pairs that are either visible when viewed sequentially
or not recoverable by the camera.

The data resides in 6-dimensional space R6. We choose
the number of separating ellipsoids k empirically and clus-

ter the positive examples into k clusters in R6. For each
cluster, we use convex optimization to find the optimal el-
lipsoid that separates positive from negative data. Sampling
within the union of all separating ellipsoids reveals a dense
set of new differential metamers.

For each cluster ki, the optimal separating ellipsoid is
found. Each ellipsoid separates the positive training exam-
ples in cluster ki from all negative training examples.

Collecting and Labeling Training Data

The set of 124 base colors are generated by uniformly
sampling CIE Lab space. For each base color, 20 baricen-
trically sampled unit vectors are generated. In total, we now
have 2480 training examples.

A video sequence is generated. Odd frames consist of
only a monochromatic image of the base color. Even frames
comprise the base color plus a 2D barcode grid correspond-
ing to a message. The magnitude of the color step size is
defined as the L-2 Norm:

‖δ‖2 =
√
δ2L + δ2a + δ2b

Here, ‖δ‖2 = 5 (in the 8-bit [0 255] scale). For these tests,
the same checkerboard message is used every time, since it
maximizes spatial variation and is likely to be noticed by
humans. A camera views the 2480 image sequences only
once and attempts to recover the embedded messages. The
camera is fixed 0.5 meters from the display with a viewing
angle normal to the image plane.

For each of the 2480 training examples, human partici-
pants were shown video sequences each containing a single
color and with an embedded checkerboard pattern alternat-
ing at 8Hz for 10 seconds. 8Hz was chosen because hu-
mans are particularly sensitive to intensity changes at this
frequency [33], and because it represents a reasonable target
for smartphone video capture rates. The participants were
asked to indicate if they could see the checkerboard pattern
or not. Three participants were used for human vision eval-
uation. They were students between ages 19 and 24. One
participant wore glasses, and none had any color-blindness.
The variance in their flicker labeling was negligible.

Single color images are used to isolate the exact behavior
of each color pair, and negating the cloaking effects of im-
age content (e.g. texture) and preventing participants from
confusing the effects of other, nearby pixels. Relative con-
trast may have an effect on visibility in real images, but this
can be overcome by embedding differential metamers only
in a select subset of pixels, or by first clustering nearby pix-
els by differential metamer gradients and not embedding on
the cluster borders. While an evaluation of spatial obtru-
siveness caused by relative contrast is interesting, it is out-
side the scope of this paper and left for future work.

Positive training examples are defined as ones whose
color embedding were completely invisible to humans, but
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Cluster of Training Data: Base Colors and Deltas in Lab color space

Figure 3: A separating ellipsoid and single cluster of pos-
itively labeled training data. Visualizing k 6-dimensional
ellipsoids is difficult, so the data has been projected down
to 2D a b space (from Lab color space). We show base
colors and color shifts at the same time. The solid circle
represents the base colors i, and its respective line segments
represents the color shift gradients δ. The color of each cir-
cle and line segment is the actual base color. Notice how
there is a general axis of color shift direction for the data
in this cluster. Since these are positive training examples,
this indicates that human viewers are relatively insensitive
to these color shifts. This also indicates that our camera is
sensitive to these color shifts.

recoverable by camera with BER (bit error rate) = 0%. All
other examples were labeled negative training data. Af-
ter labeling, 922 positive and 1558 negative examples were
used for training. Empirically, we chose the number of clus-
ters k = 50.

Learning k Optimal Separating Ellipsoids

We have two sets of points in R6, {x1, ...xN} and
{y1, ...yM}. The points xi represent the base colors and
modulation steps that satisfy the requirements for embed-
ding: BER = 0%, and no visible flicker. While the points
yi do not satisfy both of these conditions. We wish to find
a function f : Rn → R that is positive on the first set, and
negative on the second, i.e.,

f(xi) > 0, i = 1, ..., N, f(yi) < 0, i = 1, ...,M.
(1)

When these inequalities hold, we say that f separates the
two sets of points.

Quadratic Discrimination Since our data points cannot
be separated by a N -dimensional hyperplane, we seek clas-
sification via nonlinear discrimination. As long as the pa-
rameters that define f are linear (or affine), the above in-
equality can still be solved with convex optimization.

In this case, we choose f to be quadratic and in homoge-
neous form:

f(z) = zTPz + qT z + r, (2)

where P ∈ Sn (P is a symmetric n × n matrix), q ∈ Rn,
and r ∈ R, with dimensionality n = 6. Those parameters
P, q, r are bound by the following constraints:

xTi Pxi + qTxi + r > 0, i = 1, ..., N

yTi Pyi + qT yi + r < 0, i = 1, ...,M
(3)

Next, we replace 0 with ε, creating a separating band that
is 2ε wide:

xTi Pxi + qTxi + r ≥ ε, i = 1, ..., N

yTi Pyi + qT yi + r ≤ −ε, i = 1, ...,M
(4)

Dividing out by ε and subsuming the scalar 1
ε into P, q, r,

you arrive at Eq. 5. Following [6], we solve for the param-
eters P, q, r by solving the non-strict feasibility problem:

xTi Pxi + qTxi + r ≥ 1, i = 1, ..., N

yTi Pyi + qT yi + r ≤ −1, i = 1, ...,M
(5)

The resulting separating surface {z | zTPz+ qT z+ r =
0} is quadratic.

Separating Ellipsoids We can change the shape of our
quadratic separating surface by imposing additional con-
straints on the parameters P, q, and r. We form an ellip-
soid that contains all points xi, ..., xN but none of the points
yi, ..., yM by requiring that P ≺ 0, that is P is negative defi-
nite. We can use homogeneity in P, q, r to express the con-
straint P ≺ 0 as P � −I . We can then cast our quadratic
discrimination problem as the following semi-define pro-
gramming (SDP) feasibility problem:

find P, q, r

subject to xTi Pxi + qTxi + r ≥ 1, i = 1, ..., N

yTi Pyi + qT yi + r ≤ −1, i = 1, ...,M

P � −I
(6)



Figure 4: Set of 14 images used to evaluate BER across several embedding algorithms and message step-sizes.

While technically correct, this optimization problem will
fail if any of the training points fall outside their classifica-
tion boundaries. Following the development in [6] for sup-
port vector classifiers, we relax our constraints by introduc-
ing non-negative variables u1, ..., uN and v1, ..., vM . With
the relaxation variables ui and vi introduced, our inequali-
ties become:

xTi Pxi + qTxi + r ≥ 1− ui, i = 1, ..., N

yTi Pyi + qT yi + r ≤ vi − 1, i = 1, ...,M
(7)

The relaxation variables ui and vi represent the distances
of each point outside it’s proper boundary. In the original
problem, u = v = 0. We can think of ui as a measure
of how much each constraint xTi Pxi + qTxi + r ≥ 1 is
being violated and that’s what we want to minimize. A good
heuristic is minimizing the sum of variables ui and vi. The
separating ellipsoid defined by P, q, r is found with the
following optimization problem:

minimize 1Tu+ 1T v

subject to xTi Pxi + qTxi + r ≥ 1− ui, i = 1, ..., N

yTi Pyi + qT yi + r ≤ vi − 1, i = 1, ...,M

P � −I
u � 0, v � 0

(8)

To solve this problem we used CVX, a package for spec-
ifying and solving convex programs [34, 35]. After each
ellipsoid is solved, we test that the ellipsoid is populated
before accepting it.

Sampling Within Union of Ellipsoids Once k optimal
separating ellipsoids are trained, the points inside the ellip-
soids reflect desirable values for message embedding. So
to expand our gamut of differential metamers, we densely
sample inside the ellipsoid region for new points. G′ is the
expanded set of newly generated differential metamers g′.

5. Experiments
We wish to evaluate the expanded set of differential

metamers learned using the techniques described in Sec-
tion 4. For each of our embedding algorithms, a known
message was embedded into a pair of 2 images. A cam-
era then sequentially captured the original image, then the
image with the embedded message pattern. Again, the cam-
era was a Basler acA2040-90uc-CVM4000, and the display
was an Acer S240HL IPS LCD monitor. The camera was
stationed approximately 0.5 meters from the electronic dis-
play. The camera had a fixed shutter speed, ISO sensitivity,
aperture, and white balance. Each algorithm was evaluated
based on the accuracy of recovering each bit of the message.
A wide range of message step-sizes were tested. Message
step-size refers to the ‖δ‖2, or δ magnitude in 8-bit pixel
values. A diverse set of 14 host images was used, shown in
Table 4.

For the intensity-based approach, a uniform grayscale δ
is applied to every pixel representing a “1” bit. The random
approach applies a δ in a random direction to each pixel.
The RGB differential metamers approach assigns a special-
ized δ value to each pixel in the base image. The differential
metamer ellipsoids are trained in 6-dimensional RGB space.
Similarly, the Lab differential metamers approach assigns δ
values from ellipsoids trained in 6-dimensional Lab space.

Evaluation of Clustering Methods

A series of clustering algorithms were evaluated:
kmeans, kmediods, Gaussian Mixture Models, Hierarchical
clustering, and Spectral clustering. Ellipsoids were trained
and learned using each of these clustering methods. The
ellipsoids yielded differential metamers used for stegano-
graphic embedding and recovery. This evaluation is per-
formed twice for each clustering algorithm under two dif-
ferent illumination conditions. Once where the camera has
fixed high-exposure settings, and once again with fixed low-
exposure settings.

The respective mean errors were 27.285%, 25.97%,
25.025%, 26.17%, and 29.61%. The respective run times
were 0.0435s, 0.5813s, 0.0978s, 0.1299s, and 0.1387s.



Embedding Algorithms

‖δ‖2 Intensity Random
RGB
Differential
Metamers

Lab
Differential
Metamers

1 50.69% 50.99% 50.45% 49.85%
2 47.92% 48.81% 42.06% 42.06%
3 43.85% 46.97% 36.11% 37.25%
4 37.00% 44.59% 29.02% 27.83%
5 34.52% 42.41% 22.42% 21.73%
6 23.41% 41.22% 19.84% 17.61%
7 18.70% 38.10% 15.53% 15.08%
8 13.49% 35.57% 13.84% 12.80%
9 09.97% 34.72% 12.50% 12.00%
10 09.13% 32.89% 11.01% 10.91%

Table 1: BER for various embedding schemes (lower is bet-
ter). The red-shaded cells indicate δ magnitudes where an
blended message pattern is easily visible. The green-shaded
cells indicate optimal values where the blended message
pattern is camouflaged from human vision, but in a good po-
sition to be camera-recovered. Differential metamers gen-
erated with trained ellipsoids in CIE Lab are especially ef-
fective because both the BER is reduced and the threshold
for acceptable step-size is increased. Notice that for a mid-
range step-size of 5 or 6, the Lab differential metamers sig-
nificantly outperform intensity modulation.

Gaussian Mixture Models (GMMs) yielded the lowest BER
on average. Although the margin of superiority was small,
Gaussian mixture models were chosen as the best balance
of error and run-time. Regardless of method used or illu-
mination condition, the standard deviation hovered around
10% for all methods. This suggests that the recovery error
results are largely dependent on the base image used. This
result has been verified empirically as well; certain images
produce better embedding results. The run time calcula-
tions took place on an Intel 6700K processor with 32 GB of
memory running Matlab 2015b.

6. Results

Table 1 shows the average message recovery for each
embedding algorithm across a variety of ‖δ‖2 values (step
sizes). The red-shaded cells represent values for which the
‖δ‖2 is so large, the message pattern can be obviously de-
tected by humans. Figure 5 illustrates these results graphi-
cally.

For small ‖δ‖2, the RGB and Lab differential metamer
approaches greatly outperform the alternatives. Small step
sizes are typically preferable because they are more diffi-
cult for humans to see. With the differential metamer ap-
proach, larger step size can be used, facilitating more ac-

Figure 5: This graph compares message recovery across
several embedding algorithms. Regardless of embedding al-
gorithm, as message step size (‖δ‖2) increases, message re-
covery error decreases. However, large step size also means
a more visually obtrusive embedding. For an embedded
message to be invisible, smaller step size are greatly pre-
ferred. For small to mid-range ‖δ‖2, color embedding using
differential metamers is significantly better.

curate camera recovery. The differential metamers trained
in Lab space are most effective at reducing human detection
with most robust message recovery. Table 2 illustrates these
results.

Although the mean error is high compared to perfect re-
covery, it can be functionally reduced using error-correcting
codes. The proposed color messaging framework is applica-
ble to more sophisticated photo-steganographic messaging
systems. For the purposes of this paper, only the reduction
in error due to color messaging is evaluated.

Transferring Learned Ellipsoids to New Hardware

The results presented thus far showcase the effectiveness
of photographic steganography using differential metamers
trained on a single camera-display pair. But we want to
know how well our learned ellipsoids will transfer to a new
camera-display pair. If new differential metamers must be
learned for every camera-display combination, the applica-
bility of our algorithm is limited. Table 3 features experi-
mental results when the camera-display pair used for photo-
graphic steganography is totally different from the camera-
display pair used for training. Although the illumination
conditions and imaging pipeline remain unchanged, the
most significant aspects of the system have been changed.
When using different hardware, the BER increases by only
3.48%. Using the same hardware, transfered differential
metamers significantly outperform intensity-based embed-



Photographic Steganography:

Intensity vs CIE Lab Differential Metamers

Intensity Differential Metamers

Image with Embedded Message

Per-pixel difference

Camera-recovered difference

Recovered Message

BER (lower is better)

5.56% 1.39%
(a) Low Texture Image

Photographic Steganography:

Intensity vs CIE Lab Differential Metamers

Intensity Differential Metamers

Image with Embedded Message

Per-pixel difference

Camera-recovered difference

Recovered Message

BER (lower is better)

38.19% 19.44%
(b) Highly Textured Image

Table 2: Message embedding with intensity vs differential metamers example. The image in the first row contains a stegano-
graphic message pattern. Below that, the per-pixel difference shows the ground truth of exactly the changes that were made
to the original image. The camera-recovered difference shows the difference measured after the image has been displayed
electronically, and captured by a camera. Notice that the differences between ground truth and camera-captured are large.
Embedding messages with Lab differential metamers is effective for many types of images, including slide or sign type im-
ages, as is shown in (a). The example in (b) showcases a more challenging natural image case, where intensity embedding
fails in dark and highly textured areas of the image. Lab differential metamers are significantly more effective for robust
message embedding and recovery. In both (a) and (b), ‖δ‖2 = 5 for all algorithms.

ding. The differential metamers learned under certain hard- ware conditions can be transfered for a small accuracy cost.



Transferring Learned Ellipsoids to a New Camera-Display Pair

Transfered Differential Metamers

Image with Embedded Message Per-pixel difference Camera-recovered difference Recovered Message

Transfered Differential Metamers BER = 22.92% (lower is better)

Intensity Embedding

Image with Embedded Message Per-pixel difference Camera-recovered difference Recovered Message

Intensity BER = 36.11% (lower is better)

Table 3: Photographic Steganography using differential metamers learned with a different camera-display pair. An Acer
Predator MNT XB271HUC IPS display and Basler acA1300-30uc camera were used in experiment. However, the ellipsoids
yielding differential metamers were trained using the aforementioned Basler acA2040-90uc-CVM4000 camera and Acer
S240HL display. With ‖δ‖2 = 5, the recovered message has a BER of 22.92%, only 3.48% worse than the hardware used
for training as shown in Table 2. This example demonstrates that the ellipsoids learned can be robustly transfered between
different hardware and still significantly outperform intensity-based embedding.

7. Discussion and Conclusion

In this paper, we present a color modulation method used
to steganographically embed messages into ordinary images
and videos. We develop a data-driven approach to learn
a pixel mapping function that produces an optimal differ-
ential metamer pair for any pixel value. These differential
metamers are pairs of color values that minimize human vi-
sual response, but maximize camera response. The key in-
novation is a novel color-selection framework that leverages
the mismatch between human spectral and camera sensitiv-
ity curves. We refer to this task of camouflaged camera-
display messaging as photographic steganography.

We demonstrate the effectiveness of our differential
metamer generation algorithm with message embedding.
The goal is to maximize throughput, minimize recovery er-
ror, and camouflage the visible artifacts to humans. The de-
sirability of our approach stems from the creation of a com-
munication side-channel without using specialized hard-
ware. Embedded information could be used to grant ac-

cess that is conditioned on close physical presence (for se-
curity or convenience). Unlike NFC (near-field communi-
cations) which is commonly used for precise location veri-
fication but has problems with network saturation for nodes
in close proximity, beacons using photographic steganogra-
phy would ensure that users are facing a particular direction.
For example, users would not be able to access a networked
projector unless they used photographic steganography to
recover a dynamic access code embedded in the projectors
displayed images to prove that they are in the appropri-
ate location. Scenarios include those where users perform
scavenger-hunt games in museums or use outdoor electronic
billboards for tickets/coupons/schedules. It is also easy to
envision a scenario where users install a smartphone appli-
cation and have access to extra content on live-broadcast
videos.
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